
A RESERVOIR COMPUTING 
MODEL OF EPISODIC MEMORY 

     David Bhowmik, Kyriacos Nikiforou,        
Murray Shanahan 

Department of Computing 
Imperial College London 

London, UK 

Michail Maniadakis, Panos Trahanias 
 

Institute of Computer Science 
Foundation for Research and Technology Hellas 

Heraklion, Greece 
 
 

Abstract — We present a novel neural episodic memory 
architecture that utilizes reservoir computing to extract and 
recall information gleaned over time from a multilayer 
perceptron that receives sensory input. Reservoir computing 
models project input data into a high-dimensional dynamical 
space and also serve as a fading memory that holds on to past 
inputs thereby enabling the direct association of the current 
input with the past. The architecture presented utilizes these 
capabilities via an abstract feedback mechanism and in doing so 
creates attractor-like states within the reservoir that are 
associated with each discrete memory and associates these states 
and therefore memories over time into episodes. In addition, the 
feedback mechanism provides stabilization to an otherwise 
chaotic complex dynamical system. 
 

Keywords: reservoir computing, episodic memory, attractors, 
stabilization. 

I. INTRODUCTION 
     In recent years, the neural networks community has shown 
increasing interest in reservoir computing (RC), which 
provides a new and powerful biologically inspired 
computation paradigm. The main advantage of RC is that it 
projects the input data into a high-dimensional space and 
therefore simple learning methods, e.g. linear regression, can 
be used to train the readout. Moreover, the reservoir, a pool of 
neurons with random recurrent connections, serves as a fading 
memory that holds past inputs therefore enabling the direct 
association of the current input with the past. In that way, the 
reservoir acts as a spatiotemporal kernel, projecting the input 
signal onto a high-dimensional feature space [1]. The transient 
dynamics developed in the reservoir provide substantial 
processing power to the network, enabling properly trained 
readout neurons to easily extract problem specific information.  
 
     Reservoir computing is typically distinguished from 
traditional recurrent neural network approaches in that, 
learning does not adapt the whole network but is focused only 
on readout neurons [2]. Previous studies showed that optimal 
network performance is accomplished when perturbations to 
the system’s trajectory in its phase space neither spread nor 
die out [3; 4]. To improve performance further, new RC 
schemes have been proposed as summarized in [2].  

     Interestingly, the inherent capacity of RCs to integrate and 
process temporally neighboring information seems 
particularly appropriate for modeling episodic memory which 
assumes incremental and directional information recall from 
the storage medium [5; 6]. However, when working on 
strongly time dependent problems, the use of a single layer of 
neurons all of them working on the same time scale does not 
help making complex associations that involve different time 
steps. In such cases, the use of feedback may provide 
enhanced computing power to the network [7], by refreshing 
and providing second level processing of past experiencing. 
This is particularly important for episode recall because 
bringing in a memory and processing a bunch of events 
facilitates recalling some new memories which may be further 
combined with the former ones to bring some even newer 
memories and so on. 
 
     Intuitively, the use of feedback as an auxiliary input may 
enhance the overall performance because it helps shifting the 
internal dynamics in the directions that make them better 
combinable into the desired output values. Even if complex 
transitions over time constitute an important mechanism for 
episodic recall, the use of feedback often gives rise to 
instability issues [8]. The reason for these instabilities is that 
even if the model can predict the signal almost accurately, 
going through the feedback loop, small errors get amplified, 
making the output gradually diverge from the target. 
 
     The present work puts forward a novel RC architecture 
capable of memorizing and reconstructing a sequence of 
images, representing the recall of an episode from memory. At 
each processing step we use a feature-based compressed and 
therefore abstract form of the input images to be learned as 
part of the output and feedback. The use of image features in 
the processing loop facilitates the abstraction and compression 
of the scene in memory, without however reducing the amount 
of information that may be recalled back. 
 
     The architecture can be seen in figure 1. In brief, it works 
as follows: On recall a pulse identifying an episode that was 
learnt is sent to the reservoir causing it to place itself in an 
appropriate unique position in state space. This state space 
position is the same as where it was positioned at the onset of 
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learning the same episode. The state space positions are 
associated during learning to an image and its feature-based 
abstraction. During recall the reservoir output weights are 
used to reconstruct both a feature-based abstraction of the 
input image at time point T as well as a 16384 pixel high 
dimensional image at time point T. The feature-based 
abstraction is then used as feedback into the reservoir in order 
to drive the state space trajectory forward in a stable, guided 
fashion until it reaches the position at time point T+1 that was 
arrived at the same time during learning. This state space 
position is next used by the reservoir output weights to 
construct the feature-based abstraction at time point T+1, as 
well as the 16384 pixel high dimensional image at time point 
T+1. The latter abstraction is then used as feedback to drive 
time point T+2, and so on. 
 
     The obtained results show that the proposed architecture 
can successfully store and recall many whole episodes 
preserving temporal association between neighboring 
moments. Moreover, the use of the compressed input as part 
of the feedback nearly eliminates stability issues even when 
the system works under noisy conditions. 

II. METHODS 
The neuron model chosen for the reservoir implementation 

is the continuous time rate based neuron model developed by 
Sompolinsky [9]. Randomly connected networks of these 
neurons have been shown to exhibit a transition from a 
stationary phase to a chaotic phase depending on the value of 
the gain parameter gG of the model. In this work, a suitable 
learning algorithm, namely the First-Order Reduced and 
Controlled Error (FORCE) learning approach developed by 
Sussillo and Abbott [10], has been used to stabilize the 

reservoir and reproduce the high dimensional data by 
modifying the feedback and readout connectivity matrices 
respectively. The methodology presented here has been 
inspired from to the work of Laje and Buonomano [11] for 
generating motion patterns from recurrent neural networks and 
adapted for the architecture developed. The details of the 
neuron model and the learning approach are described in the 
following sections.  

 

A. Neuron Model 
The general equation defining the rate based model to be 

used is the following [9]: 
 

  = – x + gGWResr + WInS (1) 
 
 z = WOutr (2) 

 
 r = tanh(x) (3) 

 
In the above equations = 10ms is a time constant, scaling 
how fast the changes in activity are realized in the network, x 
is a vector with the current activity of the network,  contains 
the time derivatives of the network, r is the transformed 
activation vector of the network and z is the activation of the 
readout neurons. The scaling factor gG of the connections in 
the reservoir, defined as g(PcN)-0.5, determines the dynamical 
characteristics of the reservoir, where g = 1.5 is the gain, Pc= 
0.1 is the probability of connection between any two neurons 
and N= 1600 is the number of neurons in the reservoir. The 
connectivity matrices WRes, WIn and WOut  define the weights of 
the connections between neurons within the reservoir, from 
inputs to the reservoir neurons and from the reservoir neurons 
to the readouts respectively. For WRes the weights are drawn 

 
Figure 1. Episodic Memory Architecture. The architecture consists of an MLP that provides input over time into a reservoir. 
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uniformly from the interval [-1,1] with probability Pc, scaled 
by gG and left untrained. The inputs are fully connected to the 
reservoir with weights drawn uniformly from the interval [-
1,1] and left untrained. The reservoir is also fully connected to 
the readouts with weights initially uniformly drawn from [-
1,1] and subsequently trained in a supervised manner using 
FORCE learning. S contains the external input signals, which 
in the architecture presented here are the activations from the 
different layers of the multilayer perceptron. 
 

From a biological perspective, the activity of this type of 
neurons can represent the ensemble average activity of 
different neuronal populations that are effectively coupled to 
each other in either an excitatory or inhibitory way. From a 
mathematical perspective, the activity can be thought of as the 
displacement from resting state of each of the oscillators in a 
network of coupled oscillators. As can be seen from (1), every 
neuron is using the sum of external input signals, a nonlinear 
transformation of the activities of the neurons that it is 
connected to, as well as its own state to determine the change 
in its activity. This mechanism can be utilized to perform 
information processing on input signals as has been illustrated 
by [12]. In this work a recurrent neural network was optimized 
to perform context dependent computation on an input signal 
where the output depended on the contextual cue provided to 
the network. It was additionally shown that the network 
dynamics employed to perform this computation closely 
resembled the dynamics of recorded prefrontal cortex (PFR) 
activity from macaque monkeys solving the same task, 
demonstrating how such networks of artificial neurons can be 
employed to model and study computations in the brains of 
mammals. 

 
B. Training with FORCE Learning 

FORCE learning is based on the Recursive Least Squares 
(RLS) update rule [12] and proposed by Abbott and Sussillo 
[10]. This algorithm appears to be well suited for yielding 
very stable and accurate pattern generators [14] by utilizing a 
2nd-order learning rule that modifies the synaptic weights in a 
manner that the output error becomes small from the 
beginning of training. This feature is well suited to this study, 
since the network presented is stabilized by feeding a trained 
output back into the network. 

 
When the FORCE learning approach was developed, it 

was aiming to solve the problem of noisy input or erroneous 
feedback from the output neuron to the reservoir, as 
implemented in the Echo State Network (ESN) architecture 
[15], which was causing instabilities during training from the 
delayed effects from synaptic modifications through the 
feedback signal. Previous training methods avoided this 
problem by training the network in the absence of any such 
feedback, but with FORCE learning such instabilities can ‘be 
sampled and stabilized’ [10]. A second problem solved by 
FORCE learning was that of credit assignment for the output 
error. This problem requires the identification of neurons from 
the reservoir that are most responsible for the error observed 

between the output and the target function and adjusting the 
readout weights accordingly. What follows is a brief 
description of how the FORCE learning algorithm works and 
how it solves these problems.   
 

FORCE learning relies solely on error-based synaptic 
modifications of the readout, as well as the reservoir weights 
if required [11]. It allows the readout signal to be fed back into 
the network without catastrophic effects, since the main idea 
behind FORCE learning is that it quickly suppresses the 
output error by performing appropriate modifications from the 
beginning of training, which result in significant suppression 
of the output error early on. Additional modifications are 
applied to the readout weights following this initial period, in 
order to completely minimize the error between the target 
function and the network output. Weight updates for the 
readout matrix WOut are performed through a variant of the 
delta rule: 
 
 WOut(t) =WOut(t – t) – e(t) (t)r(t) (4) 
 
Where (t) is the learning rate and the error e(t) s calculated 
as the difference of the readout and the target function f(t) 
according to the equation: 
 
 e(t) =WOut(t – t) r(t) – f(t) (5) 
 
What is particularly interesting about the FORCE algorithm is 
that instead of a scalar global learning rate (t), the product of 
the error and the activity of the reservoir e(t)r(t) is multiplied 
by a neuron specific learning rate in matrix form P(t)  which 
can be understood as a running estimate of  the inverse of the 
correlation matrix of the network rates with a regularization 
term [13] in the form: 
  
 P(t) =  (r(t)r(t)T + I)-1 (6) 
 
and is calculated in an iterative manner using (8) with an 
initial value as shown in (9), where  = 1, I  is the identity 
matrix and  is defined in (7). 
 
 :=1/(1+r(t)TP(t – t)r(t)) (7) 
 
 P(t) = P(t – t ) – P(t – t)r(t)r(t)TP(t – t) (8) 

 
 P(0) = -1 I (9) 
 
This estimate is used to allocate individual learning rates to 
neurons in order to ensure that appropriate weight 
modifications can be applied to effectively reduce the error. 
The RLS-based update rule in (8) is used to update this 
estimate iteratively, while avoiding a computationally 
expensive matrix inversion in the calculation, as described by 
equation (6). An intuitive explanation of how this algorithm 
works is that initially all weights have the same learning rate 
as shown by (9). 
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This ensures that large modifications of the weights are made 
early on to reduce the initial error. While learning proceeds, P 
approaches the inverse of the correlation matrix, which is 
proportional to the inverse of the eigenvalue matrix as can be 
extracted by Principal Component Analysis of the network 
activity. As a result, neurons that have a high contribution to 
the overall variance of the network activity (and are hence 
associated with higher eigenvalues) have their learning rate 
decrease earlier than neurons that contribute less to the 
variance of network activity. In this way, the neurons with the 
highest variation in their activities are fixed early on to a 
suitable value, which keeps the output error small. The rest of 
the neurons continue to be adjusted with a learning rate that 
decreases slower to further minimize this error. An additional 
property of P is that the magnitudes of its elements decrease 
with increasing number of iterations, resulting in convergence 
to a solution at sufficiently long training time. These two 
properties solve simultaneously the problems of credit 
assignment for the output error as well as the instabilities 
introduced through feedback of the output. For a more detailed 
explanation of the algorithm, the interested reader is 
recommended to read the original work [10].  
 
     FORCE learning has been shown to work particularly well 
in the chaotic regime, which can be achieved by setting the 
scaling gain gG  of the weight matrix WRes to a value above 1 
[9; 10]. It has also been observed that less training cycles are 
required for networks that exhibit chaotic spontaneous activity 
with gG>1 compared to inactive networks with gG<1, 
indicating the practical benefit of such property.  In the same 
study, it was shown that the magnitude of the weights 
significantly decreased after training if a value of gG>1 was 
used and this has also been observed in the work presented in 
this paper. Having smaller magnitudes for the readout weights 
is usually preferred for many tasks because larger magnitudes 
are associated with over-fitting to the training data and 
significant decrease in the generalization ability of the 
network, as well as its robustness to noise. 
 

C. The Architecture 
The episodic memory architecture shown in Figure 1 

consists of two parts. The first is a multilayer perceptron 
(MLP) that has been pre-trained to classify episodes. The 
episode classification is used as input to the second part of the 
architecture which is a reservoir used for the storage and recall 
of temporal information. The reservoir consists of 1600 
neurons. Connections between neurons within the reservoir 
are formed with a probability of 0.1. 
 

The reservoir may be viewed as a dynamical state space 
with each neuron in the reservoir being one dimension in the 
state space and the activity of each neuron, which ranges from 
-1 to 1, being the range of each dimension. In this case, there 
are 1600 neurons and so 1600 dimensions. The state of the 
network at one particular moment in time can therefore be 
viewed as a point in the state space, defined by the activation 
value of each neuron on its corresponding dimension in the 

state space. The network performs numerical integration of the 
neuron update equations 50 times at each time step. Left to its 
own devices, and because of the recurrent connectivity, the 
network state will evolve and change over time leading to a 
succession of points in state space which if connected together 
in temporal order form a trajectory in state space. The choice 
of 50 numerical integrations is required so that enough 
distance exists between adjacent points in the trajectory at 
adjacent time steps (Euclidean distance between two 
consecutive points is about 4 for 1600 neurons in this 
example) so as to facilitate the separation that is required for 
the output matrices to learn to differentiate and reproduce two 
distinct output vectors from two distinct network states. 
 

The classification neurons in the MLP are connected to all 
neurons in the reservoir. When a new episode classification 
occurs an input pulse representing the classification is sent to 
the reservoir, such that the signal is input for 20 times steps 
and therefore a total of 1000 numerical integration steps of the 
reservoirs neuron update equations. This process causes the 
reservoir to move to a bounded region in state space that is 
unique to the particular classification input. Every time an 
identical classification is sent to the reservoir in this manner, 
the position in state space is moved to the same region, the 
Euclidean distance between points being up to 10-12 apart. Left 
to its own devices, and due to the recurrent connectivity, the 
reservoir will traverse a trajectory from this starting point. As 
mentioned in the introduction, the reservoir is a complex 
dynamical system and small differences can escalate in a 
chaotic manner. In this case, the small difference in the 
seemingly same starting point on two separate occasions, but 
with an error of 10-12, grows exponentially until after some 

 
Figure 2. Recall of objects from the COIL Dataset. (A-E) The first five 
objects in the dataset. (F)  Merged images in the reservoir output due to 
close proximity of the positions of attractors at branch point. 
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time the states traversed by the two trajectories are totally 
different. This is undesirable as we wish the same starting 
points to produce exactly the same trajectories in order for 
recall to be the same each time. 
 
     In order to stabilize the trajectories a feedback mechanism 
is used. All reservoir neurons are connected to 40 additional 
output neurons. The weights connecting to these neurons are 
trained to reproduce the activations of a mid-level layer in the 
MLP that also has 40 neurons. By definition this mid-level 
layer provides an abstraction of the high dimensional data 
input into the MLP, but not as abstract as the output layer 
which classifies the entire episode. In short, this mid-level 
abstraction contains features of the input data. As the input 
data change over time, the episode classification output may 
remain the same however the mid-level features change.  
 

During training the mid-level feature abstraction from the 
MLP, as well as being used to train the output weights 
mentioned, is also fixed as input into the reservoir. After 
training and during testing the trained reservoir output to the 
40 feedback neurons is used instead of the MLP as input to the 
reservoir therefore providing feedback. For training, the 
current mid-level MLP abstraction is used, whereas what is 
input into the reservoir is the MLP input from the time step 
before, similar to Echo State Network training [16]. During 
testing the reservoir output from the time step before is used 
as input. The system permits the reservoir to learn an 
abstraction of the current MLP state and then use that 
abstraction on the next update as input to drive the reservoir to 
a new position in its state space. On testing, the feedback 
facilitates a self-perpetuating system that produces output that 
reconstructs features at time point T that are then used as input 
to drive the reservoir and feature reconstruction at time point 
T+1, and so on. The mechanism not only aides stabilization 

but also gives the reservoir low complexity input that describe 
the current state in time of the MLP, and therefore historical 
data regarding the features being presented over time. 
 

The input from the mid-level of the MLP during training 
and the feedback during testing differ with an error of 10-17. 
This small error can also cause chaotic effects. Therefore, 
prior to both learning and feedback, each neuron input is 
rounded to 3 decimal places, thereby removing all discrepancy 
between the MLP mid-level abstraction and the reservoir 
feedback reconstruction signals. In doing so, total stabilization 
is achieved. 
 

Given a stable system that contains abstract historical 
information regarding an experience, that is further used to 
guide a trajectory though state space, full episodic recall can 
be implemented. In addition to the 40-neuron reconstruction 
output, the reservoir also has output weights connected to a 
large number of neurons, equal to the size of input data to the 
MLP. In this case the input data used is the Columbia 
University Image Library of 20 objects (COIL-20 from 
http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php). The images are 128 x 128 grey scale images, giving a 
total of 16384 inputs. During training the inputs to the MLP at 
the current time step are used to train the weights of the output 
of the reservoir to the 16384 neurons. Therefore there are two 
reservoir outputs. One reconstructs the 40-neuron mid-level 
abstraction MLP data at time point T, and the other 
reconstructs the high dimensional input of 16384 neurons at 
time point T. The 40-neuron feedback mechanism provides a 
manageable stabilizing input that would not be achievable if 
the high dimensional 16384 reconstruction was used for 
feedback. In addition, it provides contextual temporal input 
regarding features of the episodic experience that can be used 
for computational purposes. 

 
Figure 3. State space of five unique episodes. Each episode is colored differently and contains 65 attractor points. 
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III. RESULTS 
    The input data to the MLP is the Columbia University 
Image Library of 20 objects. Each of the 20 objects in the data 
set is an animation consisting of 64 unique frames with each 
frame being a 128 x 128 grey scale image.  The episodes to 
recall are sequences of these images. Examples of image 
reconstruction of these objects can be seen in Figure 2. 
 
    In order to illustrate the state space trajectory we performed 
Principal Component Analysis on the state space of the 
reservoir and used the two components that explain the 
highest amount of variance to project the state space 
trajectories into two dimensions. Figure 3 shows five 
trajectories of five unique episodes. Each episode was initiated 
with a unique pulse that caused the reservoir to be positioned 
in a unique place in the state space. As each trajectory evolved 
from its start point the input image to the MLP at each time 
point was associated with the position in the state space at that 
time by training the reservoir output weights. Each episode 
contained one object with 64 images of that object being 
presented twice. Because the data set contains animations of 
rotating objects, the 64th image precedes the 1st image in 
animation succession. Therefore presenting 64 images twice 
produces smooth animations that are twice the length (128 
frames).  
 
    It is interesting to note that for each trajectory in the 
dimensionality reduction of Figure 3 there are only 65 state 
space points. 1 point is the position of the initialisation pulse 
and first image. The next 63 points are the state space 
positions of next 63 images belonging to the same object. 
These locations have been guided to from the previous state 
space position by the abstract feedback. The next point is the 

first image again; however the state space position is different 
to the starting point of the episode as it has also been guided in 
state space from the previous state space position by the 
abstract feedback rather than a pulse. The state space positions 
for the following 63 images appear overlaid on the previous 
63 images. This indicates that the feedback mechanism is 
creating a temporary attractor-like system in which the same 
feedback signal drives the state space trajectory to almost the 
same position as that same signal did the previous time it was 
presented. 
 
    To explore this phenomenon further we created more 
complex episodes. Figure 4 shows the trajectories of 2 such 
episodes. Each episode contains multiple objects each of 
which is differently coloured to identify them. Episode 1 starts 
with a unique pulse and consists of 64 frames of object 1 (red) 
followed by 64 frames of object 2 (green), followed by 64 
frames of object 1 again (blue), and finally followed by 64 
frames of object 3 (yellow). Episode 2 starts with a unique 
pulse and consists of 64 frames of object 1 (cyan), followed by 
64 frames of object 4 (magenta). It can be seen from the 
trajectory of episode 1 that when object 1 is presented on two 
different occasions during the episode, after a few frames the 
red and blue trajectories overlay each other. This indicates 
attractor-like behaviour. However the first presentation of 
object 1 is followed by object 2, and the second presentation 
of object 1 is followed by object 3. This behaviour is 
preserved on recall. On each recall of object 1 the trajectories 
reach similar attractor-like state space positions for frame 64. 
However, they branch to different places, one going off to 
object 2 the other going off to object 3. There is enough 
difference in the state space caused by differing histories in 
order to distinguish where it should branch to and when. 
However, it is interesting to note that at the branch point 
indicated on the diagram, there is not enough difference 

 
Figure 4. State space of two complex Episodes. Note how the same area of state space is returned to when recalling object 1, and how at the end of showing 

object 1 there is a point which branches in three directions. 
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between the positions in state space of each of the branches in 
order for the output weight matrix to distinguish between them 
and reconstruct different high dimensional images. As a result 
of this, the learning process blurs them into one image at that 
point, until the trajectories separate enough to identify the 
objects individually again. This blurring can be seen in panel 
F of Figure 2 and is further indication of the attractor-like 
mechanism at play. It can be seen from the trajectory of 
episode 2 that when object 1 (cyan) is presented, after a few 
frames it overlays the red and blue trajectories which are also 
attractor-like stable trajectories for object 1. In addition, the 
same branching mechanism can be seen at play as previously 
discussed. 
 
    The mean absolute error between each pixel of the high 
dimensional image reconstructions and the 64 training images 
for each of the 20 objects (1280 unique images in total) is 
0.11%. There are 1600 neurons in the reservoir and 16384 
pixels in each image, which entails a 1600 x 16364 high 
dimensional output weight matrix. The minimum capacity for 
this matrix would be 1600 images each of 16384 pixels. 
Reducing the size of the reservoir and consequently the size of 
the output matrix reduces the quality of image reconstruction. 
However, we have increased the number of unique images 
well beyond the minimum capacity without reducing image 
quality. Furthermore, a very high level of image compression 
is possible due to the fact that natural video follows frame by 
frame with very similar images, and the ability of the reservoir 
to keep the state space positions of similar images close 
together, means that the output weight matrix is not put under 
any strain. Currently, the limits of this compression are 
unknown and this leaves an important area for future research. 

IV. DISCUSSION 
     The first point of interest of the mechanism for memory 
storage and recall in the proposed architecture is that the 
memory storage and retrieval of an episode depend on three 
sets of connections; this is of course without taking into 
account the trained connections in the MLP, where the target 
function for the feedback is extracted from. The first set 
includes the untrained connections inside the reservoir, 
compatible with RC practice [1], which are specified 
completely by the WRes matrix and determine the magnitude of 
interaction between connected neurons and hence the dynamic 
behavior of the network in the absence of any input or 
feedback. The second set of connections includes the subset of 
the WOut matrix that is trained to perform a mapping from the 
trajectory of network activity to the visual image and 
contributes only in reconstructing the high-dimensional visual 
input. Using the activity trajectory as the medium of memory 
storage, as opposed to utilizing attractors of the system, is in 
agreement with recent theories regarding neural computation 
[17]. The last set of connections includes all the connections 
that are part of the feedback loop, these being the subset of 
connections in WOut that are not used to reconstruct the high-
dimensional input and all the connections in WIn. The former 
are trained to reconstruct the abstracted signal from the MLP, 

while the latter regulate the effect that the external input or 
feedback signal has on the network activity. Training a subset 
of the readouts from the network to reconstruct an external 
signal from the MLP, is equivalent to training the network to 
drive its own dynamic activity in an identical way to the way 
that the signal from the MLP would have driven it. In this way 
the network is able to autonomously reproduce a complete 
memory-related response by only using a pulse as an initial 
cue. Since the reproduced trajectory of the network can be 
used by the readout neurons to reconstruct the image or 
perform any other relevant mapping, and training the feedback 
loop is sufficient to autonomously reproduce this trajectory, 
then we can conclude that training this feedback loop is 
sufficient and equivalent to storing the memory of a whole 
coherent episode in the reservoir.  
 
     The implemented model works on the basis of serial recall 
which has been shown to enable the recall of memories at a 
reasonable level through the storage and reconstruction of 
order, rather than detailed temporal, information [18; 19]. 
Even if we do not use explicit timing information (e.g. time 
labels) our model builds on the ordering of events. Partial 
memories are assigned a place in time with respect to other 
memories and the wider context, therefore separating episode 
storage and recall. The mechanism of associative chaining 
appears in various theories of memory (for a review, see [20]). 
The most successful model of serial memory encoding and 
recall is TODAM [21; 22]. The main constraint of the serial 
recall approach is the assumed accuracy in the order of 
recalled items in the episode. If the recall fails mid-sequence, 
then the chain is broken and recall must necessarily cease. To 
address chaining failure, the output of TODAM in response to 
a recall cue is not an exact copy of an item but rather a blurry 
approximation. To recover the item representation, the noisy 
output vector must first be de-blurred by determining which of 
a pool of items it approximates best. If this process is 
successful, then the de-blurred item is retrieved and used to 
cue the next response. However, if this process fails, then the 
associative chain is not necessarily broken, because the blurry 
output vector can still be used as a retrieval cue, often 
successfully retrieving the correct next item. 
 
     Hippocampal models working in a serial recall manner face 
similar problems of noise accumulation during mental 
travelling over time [23]. To overcome this issue, in a more 
recent version of this model, the authors use a less accurate, 
hierarchical representation of the environment to stabilize 
functionality [24]. Both approaches share the same idea with 
the one used here. In our work, the use of feedback keeping an 
abstracted representation of the input has been shown to 
eliminate instabilities, supporting at the same time the 
emergence of the well-known recency effects in serial 
memory recall. It is also noted that previous work [23; 24] 
explored the encoding and recall of rather simple memory 
items (usually a low dimensional vector), our model deals 
with sequences of 128 x 128 grey scale images, which is a 
harder version of the problem, still successfully accomplished. 
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     A variety of models for episodic memory have been 
proposed [25; 26; 27], ranging from abstract models to models 
considering neural pathways and structures found in the brain 
of primates. Norman and O’Reilly [28] developed the 
Complementary Learning Systems (CLS) framework based on 
anatomical and psychological studies to shed light on the 
contributions of neocortex and hippocampus to recognition 
memory in humans. In our model the MLP and the RC are 
considered cortical and hippocampal respectively. The CLS 
hippocampal network architecture of [29] even though not 
identical to, resembles the proposed architecture presented in 
Figure 1, mainly in the use of a layered architecture, recurrent 
connections and a feedback loop from higher levels into lower 
ones. Moreover, the authors report that after appropriate 
modifications to the recurrent connections and the feedback 
loop, the network is able to recall stored memories from an 
input cue, which is in close agreement with the results of this 
study where a short pulse into the network is able to initiate 
episodic memory recall through the feedback loop. This 
illustrates that even though the actual implementation of the 
architecture presented in this paper utilizes models and 
techniques from the machine learning literature, while other 
episodic memory models come from the field of 
computational psychology and neuroscience, the functionality 
of the proposed connectivity results in a biologically plausible 
mechanism for memory recall. The presented architecture 
could further be evolved towards more biological plausibility 
by either adopting an appropriate learning algorithm [30] or 
by using spiking neurons as in the paradigm of Liquid State 
Machines [17]. Even though there have been recent 
advancements in using spiking neurons for spatiotemporal 
data [31], these biologically more realistic approaches cannot 
yet offer the versatility of rate based neurons. 
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