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Abstract 

It is widely recognised that different brain areas perform different specialised functions. However, it 

remains an open question how different brain areas coordinate with each other and give rise to global 

brain states and high-level cognition. Recent theories suggest that transient periods of 

synchronisation and desynchronisation provide a mechanism for dynamically integrating and 

forming coalitions of functionally related neural areas, and that at these times conditions are optimal 

for information transfer. Empirical evidence from human resting state networks has shown a 

tendency for multiple brain areas to synchronise for short amounts of time, and for different 

synchronous groups to appear at different times. In dynamical systems terms, this behaviour 

resembles metastability — an intrinsically driven movement between transient, attractor-like states. 

However, it remains an open question what the underlying mechanism is that gives rise to these 

observed phenomena.  

The thesis first establishes that oscillating neural populations display a great amount of spectral 

complexity, with several rhythms temporally coexisting in the same and different structures. The 

thesis next explores inter-band frequency modulation between neural oscillators. The results show 

that oscillations in different neural populations, and in different frequency bands, modulate each 

other so as to change frequency. Further to this, the interaction of these fluctuating frequencies in the 

network as a whole is able to drive different neural populations towards episodes of synchrony.  

Finally, a symbiotic relationship between metastability and underlying network structure is 

elucidated, in which the presence of plasticity, responding to the interactions between different neural 

areas, will naturally form modular small-world networks that in turn further promote metastability. 

This seemingly inevitable drive towards metastabilty in simulation suggests that it should also be 

present in biological brains. The conclusion drawn is that these key network characteristics, and the 

metastable dynamics they promote, facilitate versatile exploration, integration, and communication 

between functionally related neural areas, and thereby support sophisticated cognitive processing in 

the brain. 
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1 Introduction 

1.1 Motivations and Objectives 
One of the greatest challenges in science is the question of how cognition arises from the human 

brain. Much is known about the behaviour of individual neurons, and continual progress is being 

made in explaining the function of individual brain areas as well as the basic organisational 

principles of brain structure. It is widely recognised that different brain areas perform different 

specialised functions. However, it remains an open question how localised neural activity gives rise 

to complex cognitive functions organised at a global level. In order to efficiently support the myriad 

changing cognitive demands under which we are placed, a flexible integrative mechanism must exist 

(Bressler, 1995; Doesburg et al., 2008; Varela et al., 2001).  

An influential candidate for the mechanism underlying coordination and communication among brain 

areas is synchronous oscillation over multiple frequency bands (Varela et al., 2001; Fries, 2005; Fries, 

2009; Tognoli and Kelso, 2011). Groups of neurons firing synchronously are hypothesised to 

underlie many cognitive functions such as attention, associative learning, memory, and sensory 

selection (Jensen, Kaiser and Lachaux, 2007; Miltner et al., 1999; Siegel, Warden and Miller, 2009; 

Fries et al., 2001). Recent theories suggest that transient periods of synchronisation and 

desynchronisation provide a mechanism for dynamically integrating and forming coalitions of 

functionally related neural areas (Chialvo, 2010; Kelso, 2012; Shanahan, 2012), and that at these 

times conditions are optimal for information transfer  (Buehlmann and Deco, 2010).  

The formation of transient coalitions of brain areas has been observed in vivo (Betzel et al., 2012). 

Fluctuations have been reported on a time scale of tens to hundreds of milliseconds involving 

spatially local and remote sites, and resulting in fast reconfigurations of network states (Betzel et al., 

2012). In dynamical systems terms, the tendency for multiple brain areas to synchronise for short 
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amounts of time, and for different synchronous groups to appear at different times, resembles 

metastability — an intrinsically driven movement between transient, attractor-like states. However, it 

remains an open question what the underlying mechanism is that gives rise to these observed 

phenomena in the brain.  

It may be the case that, the tendency for multiple brain areas to synchronise for short amounts of time, 

and for different synchronous groups to appear at different times is simply an epiphenomenon 

resulting from different groups of neurons performing different tasks. Alternatively, the phenomenon 

may be the result of some other mechanism than an intrinsically driven metastable dynamic. Given 

that synchronous activity between brain areas is hypothesised to facilitate optimal conditions 

information transfer (Fries, 2005; Fries, 2009; Buehlmann and Deco, 2010), it follows that 

desynchrony between brain areas would impede information transfer. Therefore, if this phenomenon 

is driven by an intrinsic metastable mechanism then the question of how this metastable dynamic 

operates in such a way that human cognition is not disrupted, but instead is stable and effective must 

be raised. Further to this, questions arise regarding whether such dynamics would form as a basis for 

cognitive processing, and if so how this would function. Before these questions can be addressed it 

must first be ascertained whether an intrinsically driven metastable dynamic is at play. The central 

aim of this thesis is to address this question using a series of computer models of neural dynamics.  

Large scale functional brain structure has been identified, for example the in the combined activity of 

whole cortices and operation of the so-called default network  (Buckner, Andrews-Hanna and 

Schacter, 2008). However, it is unclear what structural and functional characteristics would be 

required to facilitate metastable dynamics. To help validate the proposal that intrinsic metastable 

dynamics exist in the brain, it must be shown that such dynamics emerge from known brain structure, 

as well as how such brain structures themselves emerge. Therefore, this thesis investigates the effect 

that altering structure through synaptic plasticity has upon the observed dynamics. 

In recent years researchers have begun to investigate metastable dynamics in the brain. Abstract 

oscillator models of interacting neural populations connected according to human connectome data 

have been used to identify metastable dynamics as a likely cause of such transitions, and the resulting 

data correlates well with real data observed in vivo (Cabral et al., 2011; Cabral et al., 2013; Hellyer et 

al., 2014). Supporting work using abstract pulse coupled oscillator models, as well as Kuramoto 

oscillators, placed in a network of communities akin to the types of structure found in the brain, also 

exhibit metastable dynamics (Wildie and Shanahan, 2011; Shanahan, 2010). However, whether such 
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simple oscillator models sufficiently capture the behaviour of interacting populations of neurons is 

unclear. As such, the evidence in favour of metastable dynamics as a cause of the transient formation 

of coalitions of multiple brain areas is not by any means conclusive. The present investigation takes 

abstract oscillator models of neural populations as its starting point, but looks into more realistic 

spiking neuron simulations. 

After a background review in chapter 2, chapter 3 discusses the mechanistic causes of oscillation in 

the brain, leading to the examination of the pyramidal inter-neuronal gamma model of cortical 

oscillation. The chapter examines in detail the collective oscillatory behaviour of neurons given their 

individual firing characteristics and internal dynamics. In addition, it explores the effect of plasticity 

upon oscillating neuronal populations. The chapter closes by proposing an experimental 

configuration for the studies detailed in later chapters.  

A mathematical abstraction that is gaining increasing acceptance for modelling neural information 

processing, and more recently modelling apparent metastable dynamics in the brain (Cabral et al., 

2011; Cabral et al., 2013; Hellyer et al., 2014), is the Kuramoto oscillator model (Kuramoto, 1984). 

The Kuramoto model is proposed as an elementary unit to represent populations of oscillatory 

neurons, and to capture fundamental properties of the collective dynamics of interacting communities 

of oscillatory neurons. Whether abstract oscillator models of this kind are sufficient to model 

oscillating neural populations is contentious. Whilst the use of simple oscillator models is promising, 

an exploration of the extent to which they correspond to purportedly equivalent neural systems is 

required. Of particular concern here is the relevance of models of metastability in the brain that use 

Kuramoto oscillators. Chapter 4 addresses this issue experimentally by using neural models to 

replicate  the  most  fundamental  of  Kuramoto’s  findings,  in  which  he  showed  that  for  any  number  of  

oscillators there is a critical coupling value KC below which the oscillators are fully unsynchronised 

and another critical coupling value KL ≥  KC above which all oscillators become fully synchronised  

(Kuramoto, 1984). In the present study, Kuramoto oscillators are replaced with oscillating 

populations both of quadratic integrate-and-fire neurons and of Hodgkin-Huxley neurons to establish 

whether  Kuramoto’s   findings   still   hold   in   a  more  biologically   realistic   setup.  The   results   establish  

that oscillating neural populations display more spectral complexity than simple oscillator models, 

with several rhythms temporally coexisting in different structures. 

The thesis next addresses the question of whether there is an intrinsic metastable dynamic present 

amongst populations of neural oscillators that drives the system towards transient periods of 
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synchronisation and desynchronisation. Evidence using spiking neuron models of competitive 

entrainment (Wildie and Shanahan, 2012) suggests that intrinsic dynamical processes between 

populations of oscillating neurons can selectively pull populations into and out of phase, and thereby 

are potentially able to support transient coalition formation in the brain as a whole. However, the 

question remains open of whether a scaled up and more complex version of these mechanics is 

responsible for the formation of transient coalitions of multiple neural areas in systems of large-scale 

interacting neural populations, or whether the phenomenon is an artefact of other neural processes, or 

perhaps even merely an epiphenomenon.  

Having already established that oscillating neural populations exhibit high spectral complexity, with 

several rhythms temporally coexisting in different structures, chapter 5 explores inter-band frequency 

modulation between neural oscillators using models of quadratic integrate-and-fire neurons, 

Izhikevich neurons, and Hodgkin-Huxley neurons. The structural connectivity in a network of neural 

oscillators is varied, the spectral complexity is assessed, and the inter-band frequency modulation is 

correlated. The correlated frequency modulation is contrasted against measures of coalition entropy 

and synchrony. The results show that oscillations in different neural populations, and in different 

frequency bands, modulate each other and bring about changes in frequency. Further to this, the 

interaction of these fluctuating frequencies in the network as a whole is able to drive different neural 

populations towards episodes of synchrony. An area in the connectivity space is located in which the 

system directs itself in this way, facilitating the exploration of a large repertoire of synchronous 

coalitions, characteristic of metastability.  

Chapter 5 highlights anatomical structure as key to facilitating metastability. Others have identified 

anatomical structure as a major constraint on the functional complexity of neural systems (Sporns, 

Tononi and Edelman, 2000; Bullmore and Sporns, 2009; Sporns, 2013). Hence, the network 

structures that are prevalent in the brain are of great interest to those studying its capabilities. 

Evidence of localised clustering as well as a low characteristic path length between sites has been 

found in the network structure of large-scale cortical systems (Sporns, Tononi and Edelman, 2000). 

These findings, characteristic of modular small-world connectivity, have since been substantiated and 

extended (Bullmore and Sporns, 2009). In addition, Sporns (2013) reports on a growing body of 

work that draws attention to how the balance between structural segregation and integration is 

essential for the operation of the brain networks underlying cognitive function. Functional activity is 

thought to reflect underlying anatomical structure, and correlations have been found to exist between 
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patterns of structural connectivity and resting-state functional activity (Honey et al., 2009; van den 

Heuvel et al., 2009).  

Chapter 6 explores the relationship between network structure and dynamical complexity, as well as 

investigating how appropriate connectivity might arise. A computer model wherein synaptic 

plasticity acting in concert with the modulatory influences between different oscillating populations 

of neurons is presented. What results is a restructuring of the network topology so that it exhibits 

modular small-world connectivity. A symbiotic relationship between metastability and underlying 

network structure is elucidated, in which the presence of plasticity, responding to the interactions 

between different neural areas, will naturally give rise to modular small-world networks. Modular 

small-world networks in turn promote metastability, and metastability further enhances these 

structural features. This seemingly inevitable drive towards metastabilty in simulation suggests that it 

should also be present in biological brains. 

The conclusion drawn from this study is not only that metastable dynamics naturally arise in systems 

of oscillating neural populations, but also that the natural formation of modular small-world network 

characteristics, and the metastable dynamics they promote, facilitate versatile exploration, integration, 

and communication between functionally related neural areas, and thereby support sophisticated 

cognitive processing in the brain. 

1.2 Publications 
The work presented in the thesis has resulted in the following publications. 

1.2.1 Journals 

Bhowmik D, Shanahan M (2013) Metastability and Inter-Band Frequency Modulation in Networks 

of Oscillating Spiking Neuron Populations, PLoS One 8 (4), e62234. 

1.2.2 Conferences 

Bhowmik D, Shanahan M (2012) How Well Do Oscillator Models Capture the Behaviour of 

Biological Neurons? Proceedings IJCNN 2012, pp. 1-8. 

Bhowmik D, Shanahan M (2013) STDP Produces Robust Oscillatory Architectures that Exhibit 

Precise Collective Synchronization, Proceedings IJCNN 2013, pp. 1-8. 
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Bhowmik D, Shanahan M (2013) STDP Produces Well Behaved Oscillations and Synchrony. 

Proceedings 4th International Conference on Cognitive Neurodynamics. In Press. 
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2 Background to the Question of 
Metastability 

2.1 Overview 
The focus of this thesis is the question of whether neuronal oscillation plays an active role in brain 

function. To set the scene for the study this chapter first discusses the techniques for recording neural 

activity that have been used to identify brain oscillations. Next an explanation of the characteristics 

of oscillations that have been observed is presented along with a review of their association to 

different behaviours. Following this a review of current theory regarding the interaction between 

oscillations in different neural areas is given. As neuroanatomy places critical constraints on the 

functional connectivity, the chapter next explores different metrics for analysing network topology. 

Given such metrics, research work that explores different topological structures and the resulting 

dynamical complexity they exhibit is presented. The last section focuses on the anatomical structure 

found in the brain and resulting functional dynamics that have been observed in vivo.  

2.2 Recording Brain Activity 
Neurons are the basic functional units in the brain. They transmit information using electrical signals 

called action potentials. A neuron has a membrane that serves as a barrier to separate the inside and 

outside of the cell. The membrane voltage of a neuron is dictated by the difference in electrical 

potential inside and outside of the cell. Neurons are electrically charged by membrane ion channels 

that pump ions, which have different electrical charges, across their membranes. Neurons are 

constantly exchanging ions with the extracellular surroundings in this way. In doing so they can not 
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only maintain resting potential, but also propagate action potentials by depolarising the membrane 

beyond a critical threshold (Bear, Connors and Paradiso, 1996). 

The recording of neural activity is an important aspect of research for those trying to understand the 

workings of the brain. There are many techniques available to record neural activity. Single unit 

recording techniques provide precise recordings from single firing neurons by way of either an 

invasive   “sharp” microelectrode inserted into the soma, or a non-invasive patch clamp that uses a 

single electrode enclosing a membrane surface area or "patch" that often contains just one or a few 

ion channel. The latter type of electrode is distinct from the "sharp” microelectrode used to impale 

cells in traditional intracellular recordings. Other techniques such as electroencephalography (EEG), 

magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) do not 

facilitate recording at single neuron resolution, but are instead able to record the combined activity of 

groups of neurons. 

Electrophysiological measurements can be obtained using EEG by placing electrodes on the scalp 

that capture the effect of a process known as volume conduction. When many ions are pushed out of 

many neurons at the same time they push their neighbours and in doing so cause a wave. When the 

wave of ions reaches the electrodes on the scalp they push or pull electrons on the metal on the 

electrodes resulting in a reading. EEG activity reflects the net synchronous activity of thousands or 

millions of neurons that have a similar spatial location (Niedermeyer and da Silva, 2004).  

MEG captures brain activity by using very sensitive magnetometers to record magnetic fields 

produced due to the ionic currents flowing in the dendrites of tens of thousands of neurons during 

synaptic transmission. MEG has better spatial resolution than EEG because magnetic fields are less 

distorted than electric fields by the skull and scalp (Hansen, Kringelbach and Salmelin, 2010). The 

electric potential generated by an individual neuron is far too small to be identified by either EEG or 

MEG, and both techniques suffer from not being able to detect activity much below the cortical 

surface.  

fMRI measures brain activity indirectly by detecting changes related to blood flow. As neurons do 

not have internal reserves of oxygen, firing creates a need for more oxygen to be brought into the 

neuron. Oxygen is released by the blood to active neurons at a greater rate than to inactive neurons. 

The difference in magnetic susceptibility between oxygenated or deoxygenated blood, allows an 

fMRI scanner to detect the magnetic signal variation. Blood flow to a brain region therefore increases 
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when that area of the brain is in use, and the magnetic effects of this are detected. Unlike EEG and 

MEG, fMRI can detect deep activity. fMRI also has better spatial resolution than EEG and MEG. 

The Spatial resolution of fMRI is measured by voxel size. Full brain studies use larger voxels, while 

those that focus on specific regions of interest typically use smaller sizes. Sizes range from 5 mm to 1 

mm. A voxel may contain a few million neurons; however the actual number depends on voxel size 

and the area of the brain being imaged (Huettel, Song and McCarthy, 2009).  

The temporal resolution is of fMRI is between 1 or 2 seconds, whereas the temporal resolution of 

both EEG and MEG is ~1 ms. When the brain is at rest, the fluctuations in activity occur at a very 

slow time scale, hence fMRI has been very successful in studying spatial patterns in such situations. 

The more precise temporal resolution of MEG and EEG permits the detection of oscillations in the 

activity of neural populations at frequencies that are much faster than 1 Hz.   

The ability to record the fast-acting behaviour of neural populations has allowed the detection of 

periodic activity. A greater understanding of the biological mechanisms underlying such fast 

oscillation of neural populations, accompanied with insights gained from advances in the 

computational modelling of neural systems, has further stimulated interest in brain oscillations 

(Wang, 2010). It is these oscillations that are the focus of this study and which we shall now discuss. 

2.3 Oscillations and Behaviour 
The prevalence of periodic behaviour in the brain has long been observed. Oscillatory frequencies in 

the mammalian brain range from approximately 0.05 Hz to 600 Hz (Buzsáki and Draguhn, 2004). 

The local nature of most synaptic connections, along with the limits of synaptic and axonal 

conduction delays (Kopell et al., 2000; Steriade, 2001), restrict the size of the population that can be 

recruited during an oscillation. As a result, the size of neuronal area involved in an oscillation tends 

to be small for higher frequencies, whereas larger areas are recruited for slower frequencies (Buzsáki 

and Draguhn, 2004). The different oscillatory frequencies are categorised into empirically observed 

bands. The band separation results from the different band classes forming a linear progression on a 

natural logarithmic scale, such that there is a constant ratio between neighbouring frequencies. 

Neighbouring frequency bands within the same neuronal structure typically compete with each other 

(Klimesch, 1999), although several rhythms can temporally coexist in the same structure (Steriade, 

2001). It has been suggested that the separation of centre frequencies by a constant non-integer ratio 
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reduces harmonic frequencies and the effect of phase-modulation interference between bands 

(Penttonen and Buzsáki, 2003).  

It is unlikely that each frequency band is associated with a single cognitive function (Engel and Fries, 

2010), and the different rhythms have been noted to have a diverse range of functional associations. 

Thalamocortical   networks   display   increased   delta   band   (0.1−3.5   Hz)   power   during   deep   sleep  

(McCormick, Sejnowski and Steriade, 1993).  Theta  (4−7.5  Hz)  activity  is  increased  during  memory  

encoding and retrieval (Basar et al., 2000).   Alpha   band   (8−13   Hz)   changes   are   associated   with  

attentional demands (Klimesch, 1999).   Beta   (14−30   Hz)   oscillations   have   been related to the 

sensorimotor system (Pfurtscheller, Stancak Jr and Neuper, 1996). Gamma (30–80 Hz) is thought to 

underlie functions such as attention (Jensen, Kaiser and Lachaux, 2007), associative learning 

(Miltner et al., 1999), working memory (Siegel, Warden and Miller, 2009), the formation of episodic 

memory (Lisman, 2005), visual perception (Fries et al., 2001), and sensory selection (Fries et al., 

2002) to name just a few. Whilst these different oscillatory rhythms manifest themselves 

concurrently with the respective functions to which they are associated, it remains an open question 

as to whether neuronal oscillation plays an active role in these functions and brain operation in 

general or if it is simply an epiphenomenon resulting from the of activity of neural populations. 

As mentioned above, several rhythms can temporally coexist in the same structure (Steriade, 2001). 

Whilst the nature of the separation of the bands reduces the effect of phase-modulation interference 

between bands (Penttonen and Buzsáki, 2003), the interaction of frequency bands can occur, and has 

been observed in both phase (Buzsáki et al., 2003; Palva, Palva and Kaila, 2005; Belluscio et al., 

2012) and amplitude (Shirvalkar, Rapp and Shapiro, 2010). For example, the theory of theta-gamma 

phase-amplitude coupling, as integral to the coding and temporal ordering of items in working 

memory (Lisman and Idiart, 1995; Tort et al., 2009), was formulated from observations of the phase 

of a theta oscillations modulating the amplitude of a gamma oscillation in rat hippocampus (Canolty 

et al., 2006). 

2.4 Correlation between Functional Areas 
The interaction between oscillations in different brain structures is described by functional 

connectivity. Functional connectivity between different brain areas is inferred from the statistical 

correlation of phase and amplitude in EEG or MEG signals or fMRI data during the performance of a 

task or in the resting state (Park and Friston, 2013). Structural connectivity, based on diffusion MRI, 
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is able to reveal the cause of much inter-areal functional connectivity. However, diffusion MRI is 

potentially blind to weak long-range axonal connections, which may serve as weak ties for global 

integration, and hence cannot tell us the full story. In addition, functional connectivity may exist 

between anatomically unconnected areas. For example, synchronous activity in two anatomically 

unconnected areas may be driven by common sources, polysynaptic connections, or perhaps other 

configurations of bidirectional circuits (Park and Friston, 2013). 

When two areas are anatomically connected it is theorised that coherence between them opens up the 

possibility of communication (Fries, 2005; Fries, 2009). During oscillation in an individual neural 

population all the neurons are quiescent, or less active, for periods between increased levels of firing. 

This   rhythmic   behaviour   is   often   due   to   local   inhibitory   neurons   that   affect   the   populations’  

excitatory neurons with a fast and strong synaptic input (Papp et al., 2001). This leaves only a short 

window for the excitatory neurons to fire after one period of inhibition wears off and before the next 

one starts (Hasenstaub, Shu and Haider, 2005). Coherence between two neuronal populations aligns 

the firing of the two populations so that the output window of one falls within the window for which 

the other is susceptible to input. Gamma band oscillations are sufficiently regular to allow 

prediction of the next excitability peak. As long as the travelling time from the sending to the 

receiving group is also reliable, their communication windows for input and output are open at 

the same times. Conduction delays are typically an order of magnitude shorter than the cycle 

length of the oscillation allowing sending and receiving to occur within one excitability peak. 

Packages of spikes can therefore arrive at other neuronal groups in precise synchronisation and 

enhance their impact. Rhythmic inhibition therefore provides rhythmic modulation of excitatory 

input gain. Fries calls this hypothesis ‘communication   through   coherence’ (Fries, 2005; Fries, 

2009). 

The dynamics of changing phase coherence between oscillating neuronal populations has been 

studied computationally by Wildie and Shanahan (2012). They demonstrate a computer model of 

entrainment using spiking neurons in which a source population oscillating at a particular frequency 

brings into phase alignment a target population which was initially oscillating at a different 

frequency. Further to this, they show that competition between two source stimuli, which is driven by 

differences in coherence of oscillation, aligns the target population to the source population with 

which it is most coherent. Competition between stimuli of equal coherence results in model output 

that alternates between the representation of the two stimuli, in a manner strongly resembling the 
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well known biological phenomenon of binocular rivalry. Transmission of a single selected stimulus 

is enabled between generating and receiving  neurons  via  ‘communication  through  coherence’,  which  

they measure though correlation of spikes.  

Buehlmann and Deco (2010) explored the hypothesis that synchronisation makes information 

transport more efficient. They used transfer entropy, an information theoretical measure, to quantify 

the exchanged information between two neuronal populations. They show that the transferred 

information depends on the phase relation of the signal, and that the higher the power in the 

oscillation then the earlier the onset of the information flow and the faster the information transfers. 

Further to this, the amount of exchanged information also increases as a function of power. 

2.5 Anatomical Structure 
Neuroanatomy places critical constraints on the functional connectivity of the cerebral cortex (Sporns, 

Tononi and Edelman, 2000). Therefore the relationship between structural and functional 

connectivity has been of growing interest to neuroscientists. The balance between segregation and 

integration is believed by many to be essential for the operation of the distributed networks 

underlying cognitive function (Tononi, Sporns and Edelman, 1994; Fox and Friston, 2012). 

Communities and hubs in brain networks promote such integration and segregation. Communities are 

sets of regions that are densely interconnected internally, while connections between members of 

different communities are more sparse. Network hubs link communities to one another and ensure 

efficient communication and information integration (Sporns, 2013).  

Small-world structure described by Watts and Strogatz (Watts and Strogatz, 1998; Watts, 1999) has 

been the focus of recent research that assesses its relationship to the topologically of brain networks 

(Sporns, Tononi and Edelman, 2000; Bullmore and Sporns, 2009). Small-world networks have a few 

long-range connections and are highly clustered locally. As a result they exhibit a short average path 

length between any two nodes. The small-world property is formally characterised by the 

relationship between two values, the average path length between any two nodes and the fraction of 

all possible edges between neighbours that are actual edges (Watts and Strogatz, 1998). Measures 

have been defined for quantifying the degree of small-world connectivity within existing networks 

(Humphries, Gurney and Prescott, 2006). Sporns et al  (2000) investigated the structure of large-scale 

cortical systems and found evidence of localised clustering as well as a low characteristic path length 



Dynamical Complexity and Topological Structures    13 

 

13 

 

between sites, the attributes of modular small-world connectivity, and these findings have since been 

substantiated and extended (Bullmore and Sporns, 2009).  

The metric known as modularity measures the degree to which a graph can be divided into highly 

coupled sub-graphs with only a few connections between those sub-graphs. Within the brain such 

community structure is assumed to reflect functional segregation, with highly coupled nodes believed 

to share similar functional association. Local modularity and clustering surrounding a node are 

measured by the clustering coefficient (Watts and Strogatz, 1998), which is defined as the fraction of 

a nodes neighbours that are also neighbours of each other.  

There are many different ways of identifying a node as significant within the structure of a network. 

Centrality is a key concept for doing this and has also been considered in the analysis of brain 

connectivity  (Sporns, Honey and Kötter, 2007; Joyce et al., 2010; Zuo et al., 2012). The degree is 

the sum of edges on a node, and measures the direct interaction of a node with others in the network. 

Variations of this, such as the average shortest path length between a node and all others, which is 

termed closeness centrality have also been proposed (Freeman, 1979). Another measure in the 

analysis of brain networks is betweenness centrality, which is the fraction of all shortest paths in a 

network that pass through a given node (Freeman, 1977; Cheng et al., 2012; Kuhnert et al., 2012). An 

area of high betweenness centrality is commonly interpreted as lying on a significant informational 

pathway that connects different brain regions. Hagmann et al (2008) used this measure to identify 

central hub nodes within the structure of the brain. Such hub nodes have proved significant in the 

centrality of functional networks (He et al., 2009; Lohmann et al., 2010).  

2.6 Dynamical Complexity and Topological Structures 
The extent to which complex dynamics are dependent upon network structure has been the focus of 

much research (Bullmore and Sporns, 2009; Sporns, 2013). Sporns and Kötter (2004) gained insights 

into the rules governing the structure of complex networks by investigating their composition from 

smaller network building blocks, called motifs. A motif may consist of a set of brain areas and 

pathways that can potentially engage in different patterns of interactions depending on their degree of 

activation, the surrounding neural context or the behavioural state of the organism. Sporns and Kötter 

distinguish between structural motifs that quantify anatomical building blocks, and functional motifs 

that represent elementary processing modes of a network. Their assumption is that a particular 

structural motif can support a repertoire of functional motifs that may, or may not, be called upon for 
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neuronal computations. They conclude that a large repertoire of functional or effective circuits are 

obtained because the connection patterns of real brain networks maximise functional motif number 

and diversity, while at the same time they minimise the number and diversity of structural motifs, 

thus promoting efficient assembly and encoding. By rewiring random networks and imposing a cost 

function that maximises functional motif number, they generated network topologies that exhibit the 

small-world attributes of real brain networks. 

Sporns (2013) reports on a growing body of work that draws attention to how the balance between 

structural segregation and integration is essential for the operation of the brain networks underlying 

cognitive function. A study by Sporns and Tononi (Sporns and Tononi, 2001) explored the simulated 

generation of different networks with differing dynamical properties of integration, segregation and 

complexity. Complexity captures the extent to which a system is both functionally integrated such 

that large subsets tend to behave coherently, and functionally segregated such that small subsets of 

the system tend to behave independently. They found that networks optimised for complexity 

separated into densely connected clusters with fewer connections between the clusters. They 

compared the networks optimised in simulation for functional complexity and cortical connection 

matrices derived from real datasets, and found a significant overlap in their structural and functional 

characteristics (Sporns, Tononi and Edelman, 2000). 

Modular community structured networks akin to those found in the brain have also been used to 

study complex dynamics in systems of phase lagged, delayed and pulse coupled oscillators 

(Shanahan, 2010; Wildie and Shanahan, 2011). These systems exhibit interesting phenomena such 

as: metastability, chimera-like states and coalition entropy. Metastability is quantified by the variance 

of synchrony within an individual oscillator cluster over time, averaged for all clusters in the system, 

and so characterises the tendency of a system to continuously migrate between a variety of 

synchronous states. Fixing time and calculating the variance across clusters gives an index of how 

chimera-like the system is, that is to say the level of spontaneous partitioning into synchronised and 

desynchronised subsets (Abrams and Strogatz, 2004). Coalition entropy measures the variety of 

metastable states entered by a system of oscillators and is calculated from the number of distinct 

states the system can generate and the probability of each state occurring. As a collection, these 

measures capture the ability and tendency of a system to fully explore the space of dynamic 

synchronous coalitions. In the afore-mentioned work by Shanahan, a key area within the oscillator 

network parameter space was identified where the combination of these measures is optimal. 
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2.7 Functional Dynamics and the Brains Anatomy 
Anatomical structure is believed to have a major effect on functional dynamics. Brain regions that 

are connected by a large number of cortical projections are likely to be functionally related. 

Functional activity is thought to reflect underlying anatomical structure, and correlations have been 

found to exist between the degree of structural connectivity and resting-state functional activity 

(Honey et al., 2009; van den Heuvel et al., 2009). The relationship between the two is, however, very 

complicated, and the extent to which the dynamical properties of the brain are constrained by 

structure still remains unclear (Honey, Thivierge and Sporns, 2010).  

Cabral et al (2011) used a structural connectivity matrix between 66 regions of the human brain, 

downsampled from the high resolution connection matrix of 998 regions of interest obtained and 

described in Hagmann et al (2008), to study functional dynamics between brain regions. They 

performed simulations in which simple Kuramoto oscillators modelled the intrinsic oscillatory 

dynamics of functional neural areas set within a human connectome. They report the presence of 

complex dynamics and describe metastability, the formation of transient synchronous coalitions of 

brain areas. They further demonstrated that the resulting phenomena reproduced the fluctuations in 

spontaneous blood oxygen level dependence (BOLD) connectivity from human fMRI resting state 

data obtained in vivo. Cabral et al (2013) have extended this work to model the faster oscillatory 

dimension revealed by MEG recordings, and explore metastable partial synchronisation in functional 

connectivity in the 8-30 Hz range. They hypothesise that fluctuations in the synchrony degree may 

also   modulate   the   oscillators’   frequency,   leading   to   frequency-specific amplitude fluctuations, 

making the link between fMRI and MEG expressions of resting-state activity. During periods of 

lower synchrony, brain areas oscillate in the gamma-band (30-80 Hz), implying an acceleration of 

the temporal dynamics which have been shown to cause BOLD signal increases at the local level. 

During periods of synchronisation, the temporal dynamics is slowed down (10.5-21.5 Hz) and 

consequently the BOLD signal is decreased. 

Hellyer et al (2014) investigated the relationship between brain network activity, metastability, and 

cognitive state in humans. Their results from a choice reaction time task suggest that the balance of 

activity in the frontoparietal control/dorsal attention network and default mode network might control 

global metastability, providing a mechanistic explanation of how attentional state is shifted between 

an unfocused/exploratory mode characterised by high metastability, and a focused/constrained mode 

characterised by low metastability. They further simulated the neural dynamics arising in these 
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distinct cognitive states using a computational model of brain function consisting of a network of 

Kuramoto oscillators. 

2.8 Discussion 
The work of Cabral and others exemplifies a trend to use simple oscillator models such as the 

Kuramoto model (Kuramoto, 1984) as abstraction representations of oscillating neural populations 

(Breakspear, Heitmann and Daffertshofer, 2010). However, it is unclear how accurate and 

appropriate such models are for reproducing the behaviour of connected populations of oscillating 

neurons. Clearly a study using lower level neural models of oscillating neural populations would 

provide stronger evidence in support of metastability. Such a study should assess any intrinsically 

driven movements between transient attractor-like states that result in episodes of synchrony and 

desynchrony between functional areas. Further to this, a study of the structural requirements that 

promote metastability would provide greater insight into the phenomenon. These issues will be 

addressed in the forthcoming chapters, beginning with the next chapter, which presents an 

investigation of oscillation in the brain that are caused by inhibitory inter-neurons.  
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3 Modelling Brain Oscillations 

This chapter reviews the mechanistic causes of oscillation in the brain, leading to the proposal and 

examination of a simulation model for oscillation to be used in later experiments. 

Oscillations are formed by the repetitive synchronous firing behaviour of many different neurons 

within a local population. The neurons in a population collectively fire producing a spatio-temporal 

population code, which is often triggered by a stimulus they have learnt to respond to. There are 

many different neuron types in the brain, and the firing characteristics of individual neurons that have 

different types depend on their internal dynamics. Given that neurons can have different firing 

behaviour in response to learnt stimuli, and that the collective firing of different neurons is the cause 

of oscillation, the relationship between individual neuron behaviour and collective oscillatory 

dynamics requires examination. 

After an initially exploring of the causes of oscillation in the brain, and proposing an architecture to 

model this, a study of the collective oscillatory behaviour of neurons given their firing characteristics 

and internal dynamics is carried out in the context of the proposed architecture. The chapter closes 

with a review of the results and proposes an experimental configuration for the studies detailed in 

later chapters given the findings presented.  

3.1 Oscillation in the Brain 
Studies have shown that groups of neurons firing together rhythmically can occur because of 

common input from a pacemaker neuron or due to the intrinsic firing patterns of excitatory principle 

cells. The latter is more common both in the cortex and the hippocampus and is an emergent property 

of interactions between excitatory principal cells and inhibitory inter-neurons (Whittington et al., 

2000). Hasenstaub et al (2005) demonstrate both in vivo and in vitro that intracellular injection of 
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synaptic current, which have the same characteristics as recorded natural excitatory and inhibitory 

pre-synaptic potentials, reveal that inhibitory pre-synaptic potentials play an important part in 

modulating the timing and probability of action potential generation in pyramidal cells. Given that 

inhibition plays a significant role in oscillation, a review of the function of inhibition in oscillation 

follows. 

3.1.1 The Function of Inhibition 

An inhibitory input to a neuron may not always come from an inhibitory source neuron. This is 

because incoming action potentials to a neuron are subject to reversal. When neurotransmitters reach 

the postsynaptic neuron of a synapse, these molecules can bind to either ionotropic receptors or 

metabotropic receptors that are clustered in a protein-rich portion of the postsynaptic cytoskeleton 

called the postsynaptic density. Each of these two channels has a specific reversal potential. Reversal 

potentials dictate whether the incoming signal has its normal function, or whether the effect is 

reversed so that excitatory signals become inhibitory and vice versa. Gamma-aminobutyric acid 

(GABA) is one of the two neurotransmitters that facilitate inhibition in mammalian brains. The 

synaptic reversal potential of GABAA receptor currents varies widely among cell types, and probably 

even between compartments within same cell. When the synaptic reversal potential is below the 

resting potential of the neuron, inhibition will be hyperpolarising. GABAergic synapses can be 

excitatory if the synaptic reversal potential is above the action potential threshold of the neuron 

(Andersen et al., 1980). Clearly, if the configuration of the synaptic reversal potentials plays an 

important role in the control of inhibition, and inhibition plays a vital role in oscillation, then the 

configuration of reversal potentials must be considered in the proposed model of oscillation. 

It is interesting to note that if the synaptic reversal potential lies between the resting potential and the 

action potential threshold of the neuron, then GABAergic synapses will be shunting (Alger, 1979; 

Andersen et al., 1980). The term shunting inhibition derives from the fact that synaptic conductance 

short-circuits currents that are generated at adjacent excitatory synapses by reducing locally input 

resistance causing subsequent excitatory postsynaptic potentials to be reduced. Shunting synaptic 

currents has a selective inhibitory influence on locally synapsed afferents while aiding more remotely 

placed excitatory synapses. Anderson et al (1980) propose the term ‘discriminative inhibition’   for 

this behaviour.  
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Fries (2009) states that, inhibitory inter-neurons inhibit each other and excitatory neurons resulting in 

synchrony. For efficient synchronisation, inhibition is generally assumed to be hyperpolarising 

(Bartos et al., 2002). Whilst the inhibitory model used in this work uses synaptic reversal potentials, 

in line with Bartos et al, reversal potentials are configured such that inhibition is generally 

hyperpolarising. This mechanism by which inhibition causes synchronous firing is called pyramidal 

inter-neuronal gamma, which shall now be discussed. 

3.1.2 Pyramidal Inter-Neuronal Gamma 

Variations of the pyramidal inter-neuronal gamma (PING) mechanism can give rise to both fast 

gamma oscillations, as well as slower oscillations such as theta in the cortex and the hippocampus 

(Nyhus and Curran, 2010). Excitatory neurons drive the entire local network, including inhibitory 

inter-neurons. The most strongly driven inhibitory neurons will fire first and provide inhibition to 

numerous other inhibitory neurons. The inhibitory effect on all these neurons will wear off at 

approximately the same time. Affected inhibitory neurons will then fire roughly together, causing 

large numbers of inhibitory neurons to be entrained to a rhythm within just a few oscillatory cycles 

(Vida, Bartos and Jonas, 2006). 

This rhythmically   synchronised   inhibition   also   influences   the   network’s   excitatory   neurons  with   a  

fast and strong synaptic input (Papp et al., 2001). Whittington et al (2000) explain that inhibition 

must wear off at a rate that creates a window for when excitatory cells are ready to fire again, and 

excitatory cells must be able to fire fast enough so that they fire every time inhibition wears off and 

the window is open.  

Rhythmic firing can happen at different temporal scales depending on the duration of inhibition, and 

different spatial scales depending on the length of the connection from inhibitory inter-neuron to 

excitatory cell. Bartos et al (2002) report that if the synaptic decay time constant is fast, then high 

coherence is mainly reached with high excitatory drive resulting in a frequency in the upper gamma 

band (37–79 Hz). Conversely, if the decay time constant is slow, high coherence is mainly reached 

with low excitatory drive resulting in a frequency in the lower gamma band (18–55 Hz). Decreased 

conduction delay also increases the frequency, whereas increased conduction delays reduce the 

frequency. However, both decreased and increased conduction delays can reduce the average 

coherence. The particular effects of inhibition are exemplified by the difference in generation of theta 

and gamma oscillations: 
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“The   neural   mechanism   responsible   for   gamma   and   theta   rhythmic   firing   in   the   cortex   and   the  

hippocampus is similar, but primarily differs in the speed of inhibitory neurons. Whereas gamma 

rhythmic firing occurs through the interaction of excitatory principle cells and fast basket cell inhibitory 

inter-neurons acting on fast Gamma-aminobutyric acid (GABAA) receptors, theta rhythmic firing occurs 

through the interaction of excitatory principle cells and slow stellate cell inhibitory inter-neurons acting 

on slow GABAA receptors.”   (Nyhus and Curran, 2010) 

3.1.3 Neural Coding, Plasticity and Oscillation 

Neural coding is a subject of immense debate. Traditionally, neuron firing rates have been 

predominant in coding theory. However, modern recording techniques have enabled the detection 

of both synchronous and correlated firing with high temporal resolution. Experimental results suggest 

that important functions that are beyond the scope of rate coding are manifest in spatio-temporal 

spike coding, which in turn is based on individual spike timing and synchrony (Masuda and Aihara, 

2004). Groups of synchronous firing neurons are also believed to encode object information (Masuda 

and Aihara, 2004). Neurons as well as groups of synchronous firing neurons come to encode object 

information by adapting the weights on incoming synapses. A brief review of the relationship of 

synaptic plasticity to oscillation follows. We shall study plasticity in more detail later in the chapter. 

Spike timing dependent plasticity (STDP) is an empirically derived learning rule for spiking neural 

networks (Abbott and Nelson, 2000). Long-term plasticity depends on the exact timing relation of the 

spikes from pre- and post-synaptic neurons. In a pairwise system, a pre-synaptic spike followed by a 

post-synaptic spike induces long term potentiation (LTP) of the synapse, where as a post-synaptic 

spike followed by a pre-synaptic spike causes long term depression (LTD) of the synapse. STDP 

reduces the latency of a neurons response to a given input (Masquelier, Guyonneau and Thorpe, 

2008). Due to this, the phase of network oscillation upon which a given neuron fires may be 

determined by the strength of the synaptic input to that neuron. Increasing synchrony between 

neurons may induce LTP of the synapse connecting them. As a result, the stimulus properties that 

have activated these neurons are associated with each other, and synchrony is also further increased 

(Axmacher et al., 2006). 

Many observations support the view that gamma synchronisation (30-100 Hz) binds the neurons that 

represent the attended features of a stimulus (Fries et al., 2001; Engel and Singer, 2001; Fell et al., 

2003). Slower oscillations do not have a small enough time difference between the firings of the pre-
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synaptic and post-synaptic neurons to fall within the STDP time window within which plasticity is 

applied. Conversely, faster oscillations have more than one cycle during the STDP window.  Hence, 

the post-synaptic neuron may receive inputs both before and after having generated a spike, and thus 

cause both LTP and LTD (Axmacher et al., 2006). 

Given the significance of the relationship between oscillation and STDP, the analysis of the chosen 

oscillator model presented later in this chapter considers oscillators that have learnt to respond to a 

given stimulus through STDP. 

3.1.4 Oscillation and Neuron Types 

The fundamental element in oscillation is the spike elicited by a neuron. As neurons have different 

discharge patterns, and the spikes discharged by many neurons are the basis of oscillation, we must 

now consider effect of neuron discharge patterns on oscillation.  

Neuron discharge patterns can be classified according to their electrophysiological characteristics. 

Some neurons are typically tonically active. Neurons that fire in bursts are called phasic. Some 

neurons are notable for their high firing rates. Hodgkin (1948) was the first to classify neurons by 

their firing characteristics. He identified them as follow: 

Type I: Action potentials can be generated with arbitrary low frequency depending on the strength of 

input current. 

Type II: Action potentials are generated at a certain frequency that is relatively insensitive to the 

strength of incoming current. 

Type III: A single spike is generated in response to a pulse of current. Tonic spiking can only be 

generated for extremely strong currents. 

During cortical gamma rhythms, single neurons recorded in vivo display irregular firing which is at a 

slower rate than the frequency of the oscillation recorded in the local field potential (Colgin et al., 

2009; Geisler, 2005; Kondgen et al., 2007; Pesaran et al., 2002). This effect has been observed for 

both pyramidal and inhibitory inter-neurons (Csicsvari et al., 1999). Coherent network oscillation and 

intermittent firing of individual neurons have both been observed as a result of high levels of input 

noise to the network acting in concert with strong recurrent inhibition (Brunel, 2000; Brunel and 

Wang, 2003). The latter highlights that a learnt response is not necessary in order to generate 
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oscillation but that recurrent inhibition is required. Further to this, intermittent firing of individual 

neurons is a key characteristic of oscillation. 

Given the irregular and slower than the gamma frequency rate of firing of individual neurons during 

population oscillation, the different classes of neuron firing identified by Hodgkin may affect the 

coherence of oscillation in different ways. It is therefore pertinent to consider the effect of different 

neuron models during population oscillation, and we shall do so in section 3.7. 

3.2 Oscillator Model Choice 

3.2.1 Different Ways of Modelling Neural Populations 

There are several ways to model neural oscillations within brain regions and the interaction of 

oscillations between brain regions. The simplest and most abstract method is that of a system of 

weakly coupled phase oscillators. The Kuramoto model (Kuramoto, 1984) is one such example. It 

captures the activity of a population of neurons by its circular phase alone and ignores the amplitude 

of oscillations. It modifies the phase over time of each oscillator by changing it according to the 

oscillators’  own  intrinsic  frequency  and  the  effect  of  phase  difference  and  coupling  strength  between  

it and the other oscillators that connect to it. Simulations using the Kuramoto model are very popular, 

and have for example been used with realistic long-range cortical connectivity and time-delayed 

interactions to model the emergence of slow patterned fluctuations that are comparable to resting-

state BOLD functional maps, which have been measured using fMRI  (Cabral et al., 2011).  

Neural field models are a differently abstracted model important in studying neural oscillations. For 

example, the Wilson-Cowan model (1972) approximates the mean firing rate of a group of excitatory 

and inhibitory neurons and their average interactions. It models the activity of large numbers of 

neurons as a spatially continuous neural network. The model has been used to provide mathematical 

descriptions of neural oscillations and EEG rhythms (Barlow, 1993; Jirsa et al., 2002). 

A spiking neural network models a population of physically interconnected neurons each of which 

has internal neuron dynamics that produce spiking behaviour comparable to biological neurons. The 

dynamics in the network as a whole arise from interactions between individual neurons in the 

circuitry. Oscillations arise due to the synchronisation of spiking activity that results from these local 

interactions. Models of interacting pyramidal cells and inhibitory inter-neurons have been shown to 

generate brain rhythms such as gamma activity (Whittington et al., 2000). 
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3.2.2 Justification of Model Choice 

The central aim of this thesis is to understand the relationship between neural dynamics and 

structural topology. The highly abstract system of weakly coupled oscillators captures the topological 

structure of the network between oscillators, but does not represent the distinction between inhibitory 

and excitatory neurons within a population and the connectivity between them. The latter as we shall 

see in chapters 4 and 5 plays an important role in controlling the dynamics between neural oscillators 

in a large scale network. Whilst neural field models capture the activity of both inhibitory and 

excitatory neurons, they sacrifice the details of connectivity such as the strength of synapses. The 

latter is a key consideration when attempting to understand the relationship between topology and 

dynamics, and will be expanded upon in chapters 4 and 6.  

Given the above mentioned requirements, the work presented uses the more detailed spiking neuron 

models. In making this choice, a compromise must be made regarding the number of neurons in each 

oscillator given the computational burden of simulating at such a high level of detail. The chosen 

number of neurons per oscillator is 250. The largest neural network simulations run in this work 

required 64 neural oscillator nodes each of which consisted of 250 neurons. This resulted in 16,000 

neurons  and  ≈36,256,000 synapses, and entailed an immense computational burden across the entire 

parameter space sweep in the experiments. 250 neurons is a very small number, especially when the 

number of neurons in a neural population in the brain that we wish to model may number into the 

millions. However, the belief is that the dynamical properties that arise from the network structure 

extrapolate to larger scales. 

3.2.3 Model Configuration 

The neural oscillators used in this work conform to the PING architecture. Whilst the general PING 

architecture is well understood, the specific details required for particular oscillatory frequencies vary 

and involve a large space of parameter values within the general PING framework. In order to 

provide a wide range of different intrinsic oscillatory frequencies for the neural oscillator nodes used 

in the experiments presented, it was decided to obtain these parameter values by use of a genetic 

algorithm (described below). The genetic algorithm evolved, within biologically plausible bounds, 

the oscillatory frequency of 30 Hz for the each of the neuron models used. The evolutionary 

mechanisms were constrained so that each neural network was evolved in accordance with the 

general PING architecture mentioned above. All neural populations for the PING oscillators used an 

excitatory layer of 200 neurons and an inhibitory layer of 50 neurons. The excitatory layer drives the 
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entire network and so is the only one to receive external input. The input is generated from a Poisson 

process with parameter   λ   =   4.375.   The   inputs   were   scaled   using   S in order to provide sufficient 

stimulus to induce firing. The value of S differed for each neuron model. For the QIF neuron S = 45, 

for the Izhikevich neuron S = 50, and for the HH neuron S = 2.5. The networks were wired up with 

connections between inhibitory neurons (II), from excitatory to inhibitory neurons (EI), from 

inhibitory to excitatory neurons (IE), and from excitatory to excitatory (EE). The PING architecture 

used is illustrated in figure 3.1. In addition to the synaptic weight, a scaling factor of 7 was used on 

all synaptic current in the oscillatory populations to simulate networks of a larger size than could 

feasibly be modelled, given the number of individuals in a population and the number of generations 

in an evolutionary run, as well as the large number of simulation runs for the networks of neural 

PING oscillators in the later experiments. 

3.3 Modelling Neurons  
Neurons can have different internal dynamics which in turn dictate different firing characteristics. 

Therefore the choice of neuron model used for the experiments in this work may affect the results 

obtained. In order to provide a balanced perspective, in this chapter different neurons with different 

behavioural characteristics are assessed in the context of PING oscillation. 

 

Figure 3.1 Pyramidal Inter-Neuronal Gamma architecture used to generate oscillations. 
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Neurons can be described by their bifurcation properties and the period of their super-critical limit 

cycle. Type I neurons have a saddle node bifurcation and have a zero frequency super-critical limit 

cycle. Type II neurons can have a saddle node or an Andronov-Hopf bifurcation, but have a fixed 

frequency super-critical limit cycle. For saddle node bifurcation neurons, the resting state of the 

neuron is at a sable equilibrium point. Incoming spikes are integrated and move the neuron voltage to 

a saddle point at which it enters a super-critical limit cycle and produces a spike. For Andronov-Hopf 

bifurcation neurons, there is a small sub-critical limit cycle around a stable fixed point. The position 

the neuron is at in this limit cycle will dictate the effect that incoming spikes have upon the limit 

cycle, and in turn the effect of future incoming spikes. The internal neuron dynamics can therefore 

resonate to the incoming signal. When the sub-critical limit cycle approaches a large amplitude 

spiking limit the neuron enters a super-critical limit cycle which elicits a spike (Izhikevich, 2007).  

In order to validate the work presented, comparative experiments were performed using different 

neural models. By using three different neuron models, both Type I and Type II spiking properties, as 

well as saddle node and Andronov-Hopf bifurcations were able to be assessed. 

3.3.1 Quadratic Integrate-and-Fire Neurons 

The quadratic-integrate-and-fire (QIF) model (Latham et al., 2000) displays Type I neuron dynamics 

(Ermentrout, 1996). The time evolution of the neuron membrane potential is given by: 

   � �� �
C
I+VVVV

τ
=

dt
dV

tr ��
1

 

where V is the membrane potential, with Vr and Vt being the resting and threshold values respectively. 

C is the capacitance of the cell membrane. τ is the membrane time constant such that τ = RC with R 

being the resistance. I represents a depolarising input current to the neuron.  

An action potential occurs when V reaches a value Vpeak at which point it is reset to value Vreset. The 

QIF model is equivalent to the theta neuron model described by Ermentrout and Kopell (1986) if one 

sets the reset condition Vpeak =  ∞  and  Vreset = -∞.  Like Börgers and Kopell (2005) values used are Vr = 

Vreset = 0 and Vt = Vpeak = 1, which reduces the above equation to: 

  � �
C
I+VaV=

dt
dV 1�  



26 Modelling Brain Oscillations 

 

26 

 

Here  a=1/τ  and is set to the value 2 for all experiments carried out in the paper. When working with 

the QIF model it is assumed that the membrane potential is between the biologically plausible range 

Vr =  −65  mV  and  Vt =  −45  mV. 

3.3.2 Izhikevich Neurons 

The Izhikevich (IZ) neuron model (Izhikevich, 2003) is a two variable system that can model both 

Type I and Type II neurons depending upon how it is parameterised. The model simulates a 

refractory period, which is an advance on the QIF model when a Type I neuron is simulated. The 

time evolution of the model is defined as follows: 

IUVV=
dt
dV

���� 140504.0 2  
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dt
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�  
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if U >15, then { 15mU  

I is the input to the neuron. V and U are the voltage and recovery variable respectively, and a, b, c 

and d are dimensionless parameters. For excitatory neurons, the values chosen for these are as 

follows: a=0.02, b=0.2, c=-65+15×r2, and d = 8-6×r2, where r is a value between 0 and 1 chosen 

from a uniform distribution. For inhibitory neurons, the values chosen for these are: a=0.02+0,08×r, 

b=0.25-0.05×r, c=-65, and d = 2, where again r is a value between 0 and 1 chosen from a uniform 

distribution. The chosen parameter values dictate that the Izhikevich neurons used are Type II 

neurons with a saddle node bifurcation. The extra term limiting U from going above 15 prevents over 

saturation of the recovery variable caused by high levels of input. 

3.3.3 Hodgkin Huxley Neurons 

The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952) is widely considered as the 

benchmark standard for neural models. It is based upon experiments on the giant axon of the squid. 

Hodgkin and Huxley found three different types of ion current: sodium (Na+), potassium (K+), and a 

leak current that consists mainly of chloride (Cl-) ions. Different voltage-dependent ion channels 
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control the flow of ions through the cell membrane. From their experiments, Hodgkin and Huxley 

formulated the following equation defining the time evolution of the model: 
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C is the capacitance and n, m and h describe the voltage dependent opening and closing dynamics of 

the ion channels. The maximum conductances of each channel are: gk=120, gNa=36 and gL =0.3. The 

reversal potentials are set so that that Ek=-12, ENa=115 and EL=10.6. The rate functions for each 

channel are: 
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All work in this paper using the HH model adjusts the neuron resting potential from 0 mV of the 

standard HH implementation to the more accepted value of -65 mV (Gerstner and Kistler, 2002). 
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3.4 Modelling Synapses 

3.4.1 Conductance Synapses 

The synaptic model for simulations using the QIF neuron model and the IZ neuron model is a current 

synapse that simply multiplies the incoming spike by a synaptic weight: 

  ¦¦ ��
n
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where Ij(t) is the input to neuron j and time t. wij is the synaptic weight from neuron i to neuron j, and 

dij is the synaptic delay from neuron i to neuron j. A list of all n spikes produced from neuron i during 

a simulation are denoted by their spike times ti,k, where k=1,2…..n.  δ  is  a  delta  function  applied  to  t-

dij-ti,k , such that adjusting the current time t by the synaptic delay dij identifies the spike production 

time at neuron i for which a spike is due to arrive at neuron j at time t. If ti,k matches this spike time 

then the  delta function produces an output value 1. 

3.4.2 Synaptic Reversal Potentials 

The synaptic model for simulations using HH neuron model uses conductance in the synapses, and 

also uses reversal potentials to further scale incoming spikes. The latter model is as follows: 
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n
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The additions to the previous conductance synaptic model are, Vrev which is the reversal potential, 

and Vj, which is the voltage of the target neuron. The reversal potentials for the model are set to the 

same values in all experiments. For excitatory inputs the reversal potential is set to 0 mV, and for 

inhibitory inputs the reversal potential is -70 mV. Not using a synaptic reversal model for the QIF 

and  IZ  models  is  equivalent  to  using  a  synaptic  reversal  model  with  reversal  potentials  set  to  +∞  mV  

for excitatory neurons and -∞  mV  for  inhibitory  neurons. 

3.4.3 Spike Timing Dependent Plasticity 

STDP is an empirically derived refinement of the Hebbian learning principle for spiking neural 

networks. STDP displays strengthening of correlated groups of synapses, the basic feature of 

Hebbian learning, as well as other desirable features such as firing-rate independence and stability 

(Song, Miller and Abbott, 2000). Long-term plasticity depends on the exact timing relation, on the 
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time scale of milliseconds, of the spikes from the pre-synaptic neuron and the spikes from the post-

synaptic neuron.  

When the post-synaptic neuron fires at time t it initiates the synaptic weight update rule. The update 

rule considers pre-synaptic spike times (t-Δt)  within  a  given  window  (τ).  The  update  method  used  in  

this  work  is  an  ‘additive  nearest  neighbour’  scheme, in which only the spike temporally nearest the 

time of the post-synaptic spike is considered, and the weight change is not dependent upon the 

current weight value (Morrison, Diesmann and Gerstner, 2008). A pre-synaptic spike followed by a 

post-synaptic spike potentiates the synaptic weight, where as a post-synaptic spike followed by a pre-

synaptic   spike   depresses   the   synaptic   weight.   The   change   in   weight   (Δw)   is   affected   by   the  

exponential  of  the  time  difference  (Δt) and the learning rate constant (η): 

   τe=w

|t|'�

' K  

In  this  work,  for  potentiation  the  learning  rate  value  η  is  set  to  0.3,  and  the  window  τ  is  set  to  20  ms.  

For  depression,  the  learning  rate  value  η  is  set  to  -0.3105  and  the  window  τ  is  set  to  10  ms. 

A post synaptic neuron firing rate is initially fairly insensitive to the timing of the pre-synaptic firing 

but instead responds to total input. As a result, there are roughly equal numbers of pre-synaptic 

action potentials before and after each post-synaptic spike. The STDP sampling of pre-synaptic 

spikes is based on the trigger of post-synaptic firing, and therefore it is averaged over the entire 

potentiating and depressing spiking influence of the pre-synaptic neuron around that time. Figure 3.2 

shows a graph displaying the potentiating and depressing influences on STDP. The asymmetry in 

areas under the positive and negative portions of the STDP modification curve means that depression 

will be preferred. As the synapses are weakened, the post-synaptic neuron generates a more irregular 

sequence of action potentials that are more tightly correlated with the pre-synaptic spikes that evoke 

them. Therefore, post-synaptic action potentials are triggered through statistical fluctuation, at which 

time there tend to be more excitatory pre-synaptic spikes before than after a post-synaptic response 

(Song, Miller and Abbott, 2000). Song et al explain that:  

“STDP  thus  modifies  excitatory  synaptic  strengths  until  there  is  a  sufficiently,  but  not  excessively,  high  

probability of a pre-synaptic action potential occurring before a post-synaptic spike. This causes the 

neuronal  response  to  be  sensitive  to  the  timing  of  input  fluctuations.” (Song, Miller and Abbott, 2000) 
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3.5 Generating PING Oscillators 
In order to provide a wide range of different intrinsic oscillatory frequencies of neural PING 

oscillators, it was decided to obtain the PING architecture parameter values by use of a genetic 

algorithm. A genetic algorithm is a blind search and optimisation technique based upon the theory of 

natural selection (Holland, 1975). Parameters are encoded in a pseudo genome, and are used to 

instantiate an individual, in this case a neural network. A population of individuals are tested and 

scored for their fitness at performing the test. Based upon their fitness ranking, pairs of individuals 

are chosen to produce offspring for the next generation via crossover of their genomes. Mutation is 

 

Figure 3.2 The STDP weight modification curve. 
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then applied to some parameters in the new offspring genome. As this process continues over 

generations, individuals in the population become optimised at performing the target task.  

The parameters that were evolved in the generation of PING oscillators were the synaptic weights 

and delays. Both of these were generated during genome expression of each individual in each 

generation using an approximately Gaussian distribution, with the means and variances for the 

weights and the delays being the parameters in the genome evolved. The distribution is only 

approximately Gaussian as the weights were bound to evolve values between 0 and 1 for excitatory 

connections and 0 and -1 for inhibitory connections. Delays were similarly bound.  Long delays are 

quite unrealistic for a cluster of neurons in which all neurons are anatomically close together. In the 

cortex synaptic latency ranges from 0.2 ms to 6 ms (Markram et al., 1997). In order to produce 

realistic results, excitatory delays were bounded between 1 ms and 10 ms. The inhibitory delays were 

allowed to have a maximum value of 50 ms to simulate the effect of the speed of slow acting 

inhibitory inter-neurons, the behaviour of which was otherwise not modelled. 

PING architectures were evolved that were able to use STDP to learn to respond synchronously to a 

given stimulus but no other. To achieve this, after genome expression a network was first trained for 

a given amount of time by using STDP and given the stimulus it was supposed to respond to. The 

stimulus  was  generated  using  a  Poisson  process  with  parameter  λ,  and  was  scaled  by  S in order to 

provide  sufficient   input   to   induce   firing   (the  values  of  λ  and  S are detailed in section 3.2.3). After 

training individuals were tested for 5000 ms of simulated time in which they again received the same 

stimulus. The fitness function for this test consisted first of taking the spike firing times of the 

excitatory population and converting it to a continuous time-varying signal. This was achieved by 

binning the spikes over time, and then passing a Gaussian smoothing filter over the binned data. Next 

a Fourier transform was performed on the mean centred signal to produce the frequency spectrum s 

of the signal. The main fitness term was calculated by creating a scaled Gaussian centred around the 

desired frequency f in the spectrum of the form: 
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The frequency spectrum s was subtracted from this and normalised: 
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An extra penalty term was introduced to discourage frequencies outside the desired range. This was 

achieved by multiplying the frequency spectrum by -0.002 in the areas further away from the desired 

frequency whilst ignoring the area at and immediately around the desired frequency. The result was 

then normalised and added to fitness1. The stimulus to be learnt was changed on each test so as to 

ensure that the networks developed the ability to learn to respond to any stimulus that they were 

trained upon. 

A second test was performed in which an alternative random stimulus was applied for which it was 

desired that the network should not respond. A different fitness term was used to evaluate this second 

test. It consisted of ensuring the amplitude of the peak frequency response for that test was below 0.5 

so as to discourage any firing. This was achieved by obtaining a frequency response spectrum as 

described above, and then locating the frequency with the highest amplitude A. Given this the second 

fitness term was calculated as follows: 

02
)5.0A(20fitness 2
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�=           

The two fitness terms were summed to give the overall fitness of the individual. The evolutionary 

population consisted of 20 individual genomes. After each individual was tested and rated for fitness 

individuals  were   probabilistically   selected   for   the   next   generations’   parents   based   upon   its   fitness  

ranking. Crossover was performed on parent genomes after which mutation was applied to the 

offspring with a probability of 0.1. 

3.6 Hardware Acceleration 
The largest neural network simulations run in this thesis required 64 neural PING nodes each of 

which consisted of 250 neurons. This resulted in 16,000 neurons and more than 32,256,000 synapses, 

and entailed an immense computational burden across the entire parameter space sweep in the 

experiments. To cope with this, the NeMo neural network simulator was used, which processes 

neurons concurrently on general purpose graphics processing units (GPUs) (Fidjeland and Shanahan, 

2010). The NeMo software permits the addition of user plugins for neural models, which allowed the 

implementation of the QIF, IZ and HH models facilitating the work presented here. 
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3.7 Analysis of Neuron Models in PING Architecture 
To analyse the effect that different neuron models have on the ability of a PING architecture to 

oscillate, the question of how the choice of neuron model affects the learning of oscillation through 

STDP is posed. STDP has previously been studied in relation to oscillations. Hosaka et al (2004) 

demonstrate oscillatory dynamics in a network of excitatory and inhibitory Nagumo-Sato neurons 

that has been trained using STDP with an external spatio-temporal stimulus that was repeatedly 

applied. In this work a synchronous response gradually emerges, and the synchrony becomes sharp 

as learning proceeds. The authors state that the generation of synchrony itself does not depend on the 

length of the cycle of external input, however they found that synchrony emerges once per cycle of 

the length of the external stimulus trained upon. This work is here extended by assessing the effect of 

 

Figure 3.3 Raster plot of the excitatory layer of a QIF PING node oscillating at 30 Hz. The 

node has been trained to only respond to a learnt stimuli, and responds with thin sharp bands. 
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different neuron models in the same experimental context. 

In order to explore the question, neural PING oscillators were evolved to oscillate in response to a 

learnt stimulus at 30 Hz for QIF, IZ and HH neuron models using the evolutionary process described 

above. The evolutionary process optimises the networks both for their ability to oscillate at the 

desired frequency in response to a learnt stimulus, as well as their ability to not respond to a non-

learnt stimulus. Figure 3.3 shows a raster plot of the firings of the excitatory layer from the evolved 

QIF solution when it has been presented with a learnt stimulus after training. In accord with the 

finding of Hosaka et al (2004) the network fires regularly at the stimulus presentation, and has 

narrow and pronounced periodic bands. These thin bands appear approximately every 33 

milliseconds giving the 30 Hz oscillation desired. 

3.7.1 Oscillating Only in Response to a Learnt Stimulus 

This  section  presents  a  study  that  ascertains  the  networks’  ability  to  only  respond  by  oscillating to the 

learnt stimulus and no other. Figure 3.4 shows how the evolved networks respond to noise in the 

learnt stimulus. To obtain these graphs, after evolving the PING networks, they were trained with a 

stimulus. After training, the stimulus trained upon was replaced with a percentage of random data 

drawn from the same distribution. The network was then tested with the new noisy stimulus for 5000 

ms and the amplitude of the desired frequency response was measured. This was done for every noise 

percentage from 0% to 100%. The test was performed 10 times for the QIF, IZ and HH models. Each 

test is displayed as a different plotted line in the respective model graphs. A 100% noise level 

represents a completely different pattern from the training stimulus, for which it is expected that the 

network not to respond at all. The QIF network performs the best with regard to not responding to 

noisier stimuli, showing a gradual decline in the amplitude of the frequency response until it reaches 

a minimal response at 42% noise. Less than 0.5 amplitude implies that only a few neurons are firing, 

and hence no response is really being produced. With such low response to noise threshold the QIF 

model is the most highly selective to only its learnt stimulus. However, there is a wide variation in 

responses in the region of decline over the 10 test runs. This may be because the network is highly 

sensitive to particular afferents which may or may not appear in any of the 1000 runs performed at 

their particular noise level on a sample run. The IZ model has similar but not so much variation in the 

region of decline, and performs almost as well as the QIF model in regard to not responding to noisy 

stimuli with a minimal response achieved at around 50%. The HH model performs poorest with a 

much less pronounced frequency amplitude decline as noise rises, and also a very varied response  
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across the 10 tests and over all noise levels. Whilst this may mean that the network is very sensitive 

to particular parts of the learnt stimulus which may or may not appear in any of the sample runs due 

to noise, the difference to the QIF and IZ models behaviour which could also suffer from the same 

problem, suggest that the network is just inherently more volatile. 

3.7.2 The Effect of Learning Time on Oscillation 

This section presents a study that explores the effect that learning time has upon the networks. Each 

network type was trained on a stimulus for a given time t. The network was then tested on the 

stimulus for 5000 ms and the desired frequency amplitude response was measured. This was done for  

 

Figure 3.4 Trained PING networks response to noise in the learnt stimuli. Data obtained when 

stimuli is presented after training. 10 sample runs are shown for each neuron type network. 
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every learning time t between 1 ms and 250 ms. The test was performed 10 times for the QIF, IZ and 

HH models. Each test is displayed as a different plotted line in the respective model graphs shown in 

Figure 3.5. Some unpredictability can be seen below 20 ms learning time for all models. This is 

expected relative to a 33 ms stimulus. After this point the amplitude rises for QIF and IZ models until 

it stabilises around 100 ms. The QIF model shows some variance over the 10 sample runs 

highlighting the volatility of the network, which in contrast does not appear for the IZ model. Beyond 

this time point there is some dip with not much variation. The learning time is very quick with only 

three stimulus presentations required to learn a maximal frequency amplitude response. The HH 

 

Figure 3.5 The effect of learning time on the different neuron networks response to the learnt 
stimuli.  Data obtained when stimuli is presented after training. 10 sample runs are shown for each 

neuron type network. 
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model performs poorest with a less stable response throughout indicated by the high variance in the 

frequency amplitude over the 10 sample runs. Variance of amplitude in this case is not due to 

particular afferents being present on particular runs as all are present on all runs, and so is due to the 

network being more volatile. This confirms that the variance in amplitude in the noise experiments is 

also due to volatility. 

3.7.3 The Effect of Stimulus Length on Oscillation 

Figure 3.6 shows the effect of changing the length in milliseconds of the stimulus. To achieve this, a 

stimulus of length t was used to train the networks, after which they were tested for 5000 ms on the 

same stimulus. This was done for every stimulus length t between 1 ms and 100 ms. The experiment 

was performed 10 times for each neuron model. All learning stages for all stimulus lengths t had the 

same learning time. The frequency with the highest amplitude was then located. From the figure we 

can see that none of the models respond significantly to stimuli less than 10 ms long. Beyond this, 

the figure shows that for both QIF and IZ models, the length of the stimulus is roughly proportional 

to the frequency (f), with f=1000/t. The variations over the 10 sample runs are due to harmonic 

frequencies having higher amplitudes than the desired frequency response. The proportionality 

between the stimulus length and frequency cannot be seen for the HH model which is unable to use 

the same network architecture to learn to oscillate at different frequencies, given only a change in the 

stimulus length.  

Having found a dependency on stimulus length, the inhibitory layer was removed from the networks. 

It was found that it made no noticeable difference to the performance of QIF, IZ and HH models. It 

can therefore be concluded that regular repetition of a stimulus to a network that has been trained 

using STDP will cause oscillation at the frequency of presentation. For the HH model this further 

means that whilst stimulus length is important in achieving the result, the tuning of other variables is 

necessary to achieve the desired oscillation. 

The fact that oscillatory frequency is dependent upon the length of the presentation can be elucidated 

by the work of Masquelier et al (2008). They report that during learning with STDP, uncorrelated 

firings are depressed, whilst the synaptic connections with the afferents that took part in the firing of 

a neuron are potentiated. Further to this they report: 

“Each  time  the  neuron  discharges  in  the  pattern,  it  reinforces  the  connections  with  the  presynaptic  

neurons that fired slightly before in the pattern. As a result next time the pattern is presented the 
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neuron is not only more likely to discharge to it, but  it  will  also  tend  to  discharge  earlier.” (Masquelier, 

Guyonneau and Thorpe, 2008)  

 

The fact that neurons learn to always respond to a particular stimulus implies that the regular 

repetition of a stimulus would cause the network to fire regularly at the stimulus presentation, and 

that this firing would become earlier and sharper, in the sense of producing narrower and more 

pronounced periodic bands, as learning proceeds. Hence, the resulting synchrony. 

It follows from this that after an appropriate period of learning the frequency of the oscillation can be 

adjusted by simply altering the length of the stimulus, as it is only the beginning of the stimulus that 

 

Figure 3.6 The effect of changing the length of the stimuli. All networks were trained for the same 

amount  of  time.  The  plots  show  the  network’s  response  after  training. 10 sample runs are shown for 

each neuron type network. 
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is required to induce firing. To test this hypothesis a stimulus of 100 ms was generated and the IZ 

network was trained on it repeatedly until a satisfactory amplitude response was attained. After this, 

the network was tested for 5000 ms with the stimulus but only using the first t milliseconds 

repeatedly. This was done for every value of t between 13 and 100 ms. As can be seen by the results 

shown in Figure 3.7, the hypothesis is correct. Hosaka et al (2004) state that in a network of 

excitatory and inhibitory neurons, STDP transforms a spatiotemporal pattern to a temporal pattern. 

However, from the evidence above it may be concluded that the resultant temporality obtained using 

STDP is not due to the network dynamics that result from the PING architecture, but is an artefact of 

repeated periodic presentation of   a   learnt   stimulus.   The   network   will   respond   ‘synchronously’  

whenever the stimulus is presented. 

 

Figure 3.7 The effect of altering the stimulus length. The Izhikevich neuron was trained on a 

stimulus until a satisfactory amplitude response was achieved. The plot shows the frequency 

response after training when the stimulus length is altered and repeatedly presented. 
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3.8 Discussion 
The analysis presented demonstrates that STDP generates robust synchronous responses. After 

learning, the networks are highly selective for their learnt stimulus and do not respond to other 

stimuli. Effective learning is possible within only three stimulus presentations. Given that the 

resultant oscillatory frequency is dependent upon the length of the presentation, the hypothesis that 

the frequency of the neural oscillator can be adjusted by simply altering the length of the stimulus 

was experimentally proven.  

The frequency of the oscillations in PING architectures is caused by the feedback time over the EI/IE 

loop. From the experiments it is concluded that the resultant temporality obtained through learning is 

not due to the network dynamics that result from the PING architecture, but is an artefact of repeated 

periodic  presentation  of  a   learnt  stimulus.  The  network  will   respond  ‘synchronously’  whenever   the  

stimulus is presented. Hence, it can be concluded that repeated post-learning presentation of a 

stimulus can override or interfere with the oscillations that would otherwise be caused by the PING 

architecture. A fast EI/IE loop will feed back and subside before the next learnt stimulus response. In 

this case oscillations from the periodic stimulus will take precedence over PING oscillations. 

However, a longer EI/EE loop could provide inhibition at the time at which the next learnt stimulus 

response is due and therefore cause interference. This suggests that over-training on a single stimulus 

may not be desirable. The motivation of this work is to understand the relationship between network 

structure and dynamics. The PING architecture is an important aspect of the network structure. 

Therefore, it is advisable that the assessment of PING oscillators in the larger experimental settings 

presented in the forthcoming chapters do not make use of pre-training oscillators using STDP, as this 

may cause interference. 

Type I and Type II neuron behaviour, as exhibited by QIF and IZ models respectively, does not make 

any difference in learning to respond to the temporality of stimuli, nor to the robustness thereof. 

However, the HH model does not perform in the same manner. The difference in the HH neuron, 

which is classified as a Type II model, is the Andronov-Hopf  bifurcation  and  the  neuron’s  synaptic  

reversal potential. The result is a less robust network that is also unable to use the same architecture 

to learn to respond to stimuli that have a variety of presentation times, but requires specific tuning of 

parameters to achieve desired oscillatory frequencies. It is interesting to note that the more 

biologically realistic model is less robust and requires specific parameter turning, leaving open the 
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question of how the brain facilitates this in order to achieve a broad variety of oscillatory frequencies 

in response to different stimuli.  

Regarding the application to future experiments presented in this work, it is clear that experiments 

must be performed with neuron models that exhibit both saddle node and Andronov-Hopf 

bifurcations. This will ensure that the work offers a balanced assessment of the use of PING 

architectures for oscillations in a larger experimental context, since these differences in internal 

neuron dynamics may impact on the results obtained. 
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4 The Collective Behaviour of Neural 
Oscillator Populations 

This chapter discusses the phenomenon of synchrony in nature and neuroscience. Abstract models of 

oscillators are presented and their collective synchronous behaviour compared to neural oscillators 

by means of computer simulation. 

Synchrony is a ubiquitous phenomenon in nature that is manifest when groups of oscillators are 

connected. When two distinct objects oscillate at different frequencies and phases they are 

desynchronised, but when they both oscillate at the same frequency and phase they are said to be 

synchronous. Synchrony can be likened two people hitting a drum at the same tempo and phase.  The 

tempo is the frequency of the beat. The phase refers to when the beats happen. Imagine two people 

drumming at the same tempo. Even though each is at the same tempo, one person may hit the drum 

when the other person is quiet, and vice versa. If this is so they are said to be completely out of phase. 

If they hit the drum at the same time and therefore quiet moments also happen at the same time they 

are said to be in phase. 

It is shown through the experiments presented in this chapter that the collective behaviour of neural 

oscillators broadly conforms to the same synchronous behaviour exhibited by mathematically 

abstract oscillator models. Further to this, the chapter will demonstrate that dynamical systems that 

have external influences that themselves do not receive feedback from the system display internal 

dynamics that differ dramatically from dynamical systems that are completely self contained, whilst 

at the same time exhibiting comparable external behaviour. 
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4.1 Synchronisation in Neuroscience 
There has been growing interest in brain dynamics and oscillatory behaviour within neuroscience 

communities due to the realisation that different perceptual and behavioural states are associated with 

different brain rhythms. It has been proposed that disparate groups of neurons firing synchronously 

provide a mechanism that underlies many cognitive functions, such as attention (Jensen, Kaiser and 

Lachaux, 2007), associative learning (Miltner et al., 1999), working memory (Siegel, Warden and 

Miller, 2009), and the formation of episodic memory (Nyhus and Curran, 2010). A role for 

synchronisation has been proposed in opening up communication channels between neuron groups 

(Fries, 2005). As Buszáki and Draguhn claim:  

“The  synchronous  activity  of  oscillating  networks  is  now  viewed  as  the  critical  ‘middle  ground’  linking  

single-neuron  activity  to  behaviour” (Buzsáki and Draguhn, 2004).  

4.2 Why Synchrony Occurs 
Synchrony may be contrasted with the concept of resonance. With resonance, one object is initially 

oscillating whilst a second is not, but then the second starts to oscillate at the same frequency as the 

first. Resonance therefore describes an object that is oscillating in sympathy with another. The reason 

an object oscillates in sympathy is due to some connection between the two. For example, one 

oscillating object (such as a violin string) may be causally linked to another (such as a nearby guitar 

string) via the surrounding atmosphere, causing vibrations in the air that affect the second object so 

that it too starts oscillating. 

Synchrony is similarly caused by a connection between two objects. But unlike resonance, where one 

object is originally oscillating and the other is not, with synchrony both objects are originally 

oscillating. However, the frequencies at which each is originally oscillating are different. Eventually 

they both come to be oscillating at the same frequency. When they synchronise, they may 

synchronise to a frequency that is different from either of the original frequencies. So for example, 

consider two pendulums hanging from the same beam. Suppose one is swinging at 2 Hz and the other 

at 4 Hz. The beam connecting the two creates a causal interaction. After a while and after much 

interaction both may end up oscillating, for example at 3 Hz. This phenomena was first reported by 

Huygens in 1665. Both are synchronised to the same frequency, but at a different frequency different 

from both initial frequencies. The reason for the different final frequency is that the causal interaction 
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between the pendulums is bidirectional. The oscillation from one is affecting the oscillation of the 

other, and vice versa. With resonance, the causal effect is one way, so the second object oscillates in 

sympathy at the frequency of the first. 

In the brain there may for instance be one population of neurons oscillating at one frequency and 

another population oscillating at another frequency. The neurons in one population are causally 

connected to the other by synapses, and vice versa. Over time the oscillation in each synchronises so 

that the bursts of firing in each population are at the same frequency. Not only that but they may also 

have same phase.  

4.3 Simple Oscillator Models and Neuroscience Research 
An increasingly common level of abstraction for modelling neural information processing is one in 

which simple phase oscillators are used as elementary units representing populations of oscillatory 

neurons (Acebrón et al., 2005; Breakspear, Heitmann and Daffertshofer, 2010). A popular phase 

oscillator model used to capture the collective dynamics of such interacting communities is the 

Kuramoto model (Kuramoto, 1984; Acebrón et al., 2005; Strogatz, 2000), which is defined as 

follows: 
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ωi is the intrinsic frequency of oscillator i and θi(t) is the phase of oscillator i at time t. Kji is the 

strength of connection from oscillator j to oscillator i. N is the number of oscillators in the system. a 

is an optional phase lag. The phase of oscillator j (θj) that feeds into oscillator i (θi) may also be 

subject to a time delay d, such that the phase of oscillator j used to update at time t is the phase of 

oscillator j at time t-d. A basic Kuramoto model sets a and d to 0. As can be seen the strength of 

connection and differences in phase between oscillators affects the current phase of an oscillator. 

Amplitude of oscillation plays no role in this model. The model therefore describes the most basic 

property of oscillators and the interaction between them. 

The Kuramoto model has proved valuable in modelling neural systems, from replicating real data to 

producing behavioural architectures. Cabral et al (2011) use the Kuramoto model in simulation to 

explore the relationship between the slow modulation of gamma-band activity in the functional 

connectivity of a resting state network as seen in fMRI results, and its relationship to anatomical 



46 The Collective Behaviour of Neural Oscillator Populations 

 

46 

 

connectivity and oscillations in localised neural areas. Investigating metastable chimera states in 

small-world topologies akin to those that appear in the brain, Shanahan (2010) built a community-

structured network of Kuramoto oscillators and identified, as did Cabral et al (2011), the rich 

dynamics that results from the interplay between long-range connectivity of a large-scale network 

and interactions at a local level. In order to engage neuroscience with insights into the situated and 

embodied nature of cognitive dynamics Santos et al (2011) explored metastable dynamical regimes 

in a network of Kuramoto oscillators that was embodied in an agents sensorimotor loop. 

Unlike the Kuramoto model, pulse coupled oscillators interact with each other at discrete times that 

are dictated by a phase response curve. Whilst there is a greater perceived affinity to neural systems 

when moving from phase lagged, to delayed, to pulse coupled oscillator system, it is not obvious that 

these models are a good representation of neural systems, which are far more complex. Given that 

the simplest model, the Kuramoto model, is widely used to capture fundamental properties of the 

collective dynamics of interacting communities of oscillatory neurons, this chapter poses the 

question: How well or accurately does the Kuramoto model represent oscillating population of 

neurons? The question is addressed by assessing if neural models behave in the same manner as 

simple oscillator models when replicating the most fundamental of Kuramoto’s findings regarding 

oscillator interaction.  

In a much cited monograph, Kuramoto (1984) showed that for an infinite number of oscillators with 

different intrinsic frequencies that are all uniformly connected with one another, there is a critical 

coupling value Kc below which the oscillators remain fully unsynchronised. Further to this there is 

another critical coupling value KL ≥   Kc above which all oscillators become fully synchronised 

(Jadbabaie, Motee and Barahona, 2004). In this chapter this most fundamental property of oscillators 

is evaluated. The critical coupling experiment is emulated, but using populations of oscillating 

neurons in place of the simpler Kuramoto oscillators.  

4.4 Experimental Variations 
In the experiment presented in this chapter, numerous simulations are performed in which many 

neural PING oscillators are wired together to form a network. In each simulation the oscillators are 

wired together with a particular connection strength, and the connection strength is different on each 

simulation   run.   The   network’s   overall   synchrony   can   therefore   be   assessed   according   to   the  

connection strength on each simulation run. 
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In the previous chapter a difference was found in the behaviour of oscillatory networks whose 

neurons had different bifurcation properties. In order to assess the critical coupling experiment fully, 

the classic experiment is performed first using quadratic integrate-and-fire (QIF) neurons and then 

using the Hodgkin-Huxley neuron model (HH). The two models capture the properties of Type I 

neurons with a saddle node bifurcation, and Type II neurons with an Androv-Hopf bifurcation 

respectively. 

The frequency of the oscillations in PING architectures is caused by the feedback time over the EI/IE 

loop. The previous chapter highlighted how training using STDP may interfere with the behaviour of 

this architecture. In this case the resultant temporality obtained through learning was not due to the 

network dynamics that result from the PING architecture, but is an artefact of repeated periodic 

presentation  of  a  learnt  stimulus.  After  training,  a  population  of  neurons  will  respond  ‘synchronously’  

whenever the stimulus is presented. Given that there are differences in the behaviour of trained and 

untrained architectures both shall be assessed in the context of the critical coupling experiment. 

4.5 Generation of Neural Oscillator Nodes 
The neural oscillators used in this work conform to a PING architecture. Whilst the general PING 

architecture is well understood, the specific details required for particular oscillatory frequencies and 

particular neuron models vary and involve a large space of parameter values within the general PING 

framework. In order to provide a wide range of different intrinsic oscillatory frequencies for the 

neural oscillator nodes used in the experiment, it was decided to obtain these parameter values by use 

of a genetic algorithm (described in secton 3.5). The genetic algorithm evolved, within biologically 

plausible bounds, every oscillatory frequency between 10 Hz and 50 Hz for the QIF and HH models. 

QIF and HH neural oscillators were evolved that responded to any stimulus, whereas neural 

oscillators that were trained to only respond to a learn stimulus were only evolved for the QIF model. 

The oscillator networks that were not trained to respond to a single given stimulus, but instead 

responded by oscillating to all stimuli, had only one test phase in which they were presented with a 

random stimulus as described in the previous chapter. After this they were scored for fitness using 

only the term fitness1 from  chapter  3.  The  input  is  generated  from  a  Poisson  process  with  parameter  λ  

= 4.375. In order to provide sufficient stimulus to induce firing, the untrained QIF neuron networks 

scaled inputs by a factor S = 8, and the untrained HH neurons networks scaled inputs by S = 1. The 
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QIF oscillators that were trained to respond only to a single learnt stimulus were evolved exactly as 

described in section 3.5 and the model parameters were as described in section 3.2.3. 

The networks were wired up with connections between inhibitory neurons (II), from excitatory to 

inhibitory neurons (EI) and from inhibitory to excitatory neurons (IE). Excitatory to excitatory (EE) 

connections were included for networks that were trained using STDP, but excluded for networks 

that were not trained. Excluding the EE connection limited saturation effects in the HH model 

(meaning that all neurons were firing all of the time). Saturation effects tended to arise in the 

simulations in which many neural PING nodes were wired together. The possibility of saturation was 

not otherwise catered for in the evolutionary process due to the PING networks being evolved in 

isolation. Network that used untrained oscillator used a scaling factor of 5 on all synaptic connections 

in these pathways, similarly the trained oscillators used a scaling factor of 7. 

 

 

Figure 4.1 Mean delays for evolved untrained QIF PING networks. 
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The evolved QIF solutions for networks that did not use STDP but relied on the PING architecture to 

produce different frequencies of oscillation all had weights with very high means and small variances. 

The respective HH solutions showed greater variation in the weight means across evolved solutions 

for different frequencies, indicating greater sensitivity in the model and solution such that they 

required a very specific balance of the parameters for each particular frequency solution. The means 

for the delays evolved for both QIF and HH solutions had a similar form, from which it can be 

concluded  that  the  EI  mean  delay  +  IE  mean  delay  ≈  1000/2f. This is illustrated for the QIF model in 

Figure 4.1. Figure 4.2 shows a raster plot of the firings of the excitatory layer of a QIF node that had 

not been trained using STDP and therefore has no EE connections. The oscillator is producing 

regular wide bursts of firing at a frequency of 20 Hz.  

 

Figure 4.2 Raster plot of the excitatory layer of an evolved QIF PING oscillator. The oscillator 

had not been trained. The frequency of the burst of firing is 20 Hz. 
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4.6 Synchronisation metric 
A measure of the networks global synchrony was required for each simulation run in the experiment. 

In this work each neural PING oscillator in a network consisted of an excitatory layer and an 

inhibitory layer. The synchrony was only calculated for the excitatory neuron layers in the PING 

oscillators in a network. To achieve this, the spikes of each neuron in each excitatory layer were first 

binned over time, and then a Gaussian smoothing filter was passed over the binned data to produce a 

continuous time varying signal. Following this, a Hilbert transform was performed on the mean-

centred filtered signal in order to identify its phase. No band-pass filtering was performed during this 

process. The synchrony at time t was then calculated as follows: 
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where θj(t) is the phase at time t of oscillatory population j . i is the square root of -1, N is the number 

of oscillators, and tmax is the length of time of the simulation. φ(t)  is the instantaneous synchrony and 

φ  is  the  mean  frequency. 

4.7 The Question of Neural Coupling Strength 
In replicating the critical coupling experiment with neural systems we are faced with an immediate 

question:  How  does   the  notion  of  coupling  strength  in  Kuramoto’s  oscillator  model,  in  which  each  

node is a simple phase oscillator, relate to a neural model in which each oscillatory node is made up 

of many neurons? We have two options: the coupling between two nodes may refer to the number of 

synaptic connections between the neurons, or it may refer to the strength of the synaptic weights. 

To address this issue the results from a parameter sweep of connection ratios and synaptic weights is 

first presented. For each set of parameter values in the sweep, the experiment takes 10 QIF oscillator 

nodes (not trained) that have each been evolved to oscillate at a different frequency using a PING 

architecture as described above. Each node is chosen by frequency from a uniform distribution 

ranging between 10 Hz and 50 Hz. The excitatory layers in each node are connected to one another 

with a given connection ratio to form a network of nodes. A connection ratio of 1 represents all-to-all 
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connectivity   so   that   each   neuron   in   one   node’s   excitatory   layer   is   connected   to   each   neuron   in  

another  node’s  excitatory  layer.  Once  the  connections  have  been  established they are given a weight 

as defined by the point in the sweep. The sweep is two dimensional, ranging from a connection ratio 

of 0 to 1 and a synaptic weight from 0 to 1. An increment of 0.05 is used for both the connection 

ratio and the synaptic weight in the sweep. At each point in the sweep the overall synchrony of the 

network is measured. 

The result of the sweep is shown in 

figure 4.3. It can be seen that 

connection ratio and weight have a 

similar effect with neither showing 

a marked importance over the other 

and with the graph appearing 

symmetrical. From this result it is 

safe to assume that the use of both 

connection ratio and synaptic 

weight in the main Kuramoto 

experiment will not be biased by 

using a prescribed value for the 

connection ratio and sweeping 

across only the synaptic weight in 

order to explore Kuramoto notion 

of coupling strength. As such all 

further experiments will use a 

connection ratio of 0.2 and simply 

sweep the synaptic weight parameter. 

4.8 Critical Coupling Experiment 

4.8.1 Experimental Setup 

PING architectures were evolved for every frequency between 10hz and 50hz for both QIF and HH 

neuron models, as well as the QIF models that have been trained using STDP. A series of simulations 

were performed for each type of model. 

 

Figure 4.3 The effect of synaptic weight and connection 
ratio on synchrony. The measure is taken between PING 

nodes in a network of 10 PING nodes. 
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Kuramoto calculated analytically the critical values in the case of an infinite number of oscillators 

connected all-to-all for a few well-known distributions of intrinsic oscillator frequencies (Jadbabaie, 

Motee and Barahona, 2004). For simplicity, Kuramoto assumed that the distribution of oscillator 

intrinsic frequencies was unimodal and symmetric about its mean frequency, as in a Gaussian 

distribution for example (Strogatz, 2000).   In   line   with   Kuramoto’s   specification   the   evolved  

oscillators were selected using a Gaussian distribution with a mean of 30 Hz. The variance that was 

chosen in order to ensure a good spread of different oscillator frequencies was 10 Hz. 

In all experiments 64 neural oscillator 

nodes were used to form a network of 

nodes. Each node receives external input 

to its excitatory layer as with the 

evolutionary setup described above. 

Figure 4.4 illustrates the network setup 

(but for a network of 3 nodes). For 

architectures that were not trained, the 

external input along with the evolved 

PING architectures induces the intrinsic 

oscillatory frequency. For those that were 

trained, the frequency of presentation of 

the learn stimulus induced the intrinsic 

oscillatory frequency of the node. 

The phase of each oscillator was determined by the time at which external input to the oscillator was 

started, which varied from 0 ms to 100 ms. The slowest oscillator was 10 Hz and therefore a random 

start point ranging from 0 ms to 100 ms allowed for 10 Hz oscillators (as well as all oscillators of 

higher frequency) to be completely out of phase with each other. The neurons in the excitatory layers 

of each node were synaptically connected to the neurons in the excitatory layers of each other node 

with a connection ratio of 0.2. The experiments involved a sweep of synaptic weights for all inter-

node connections. These weights were all set to the same value on the same iteration in the 

experimental sweep. On each iteration this synaptic weight value was changed. At each point in the 

sweep the overall synchrony of the network was measured. The network was simulated for 2000 ms 

for each iteration of the sweep. Each network comprised 16,000 neurons and ≈32,256,000 synapses.  

 

Figure 4.4 Network of oscillators. Note only a 

network of 3 oscillator nodes is shown here. 
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4.8.2 Results 

100 simulations were performed for each model type, with a different sample weight for each 

simulation.   After   a   particular   high   coupling   value,   all   networks   models   exhibited   ‘saturation’,  

meaning that all excitatory neurons in all nodes were firing continuously. The results shown here 

display data up to the respective point of saturation for each model type as data beyond this point is 

 

 

Figure 4.5 Global synchrony for 10 PING oscillators. Each dot is a run at a different synaptic 

weight setting. 
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not noteworthy. 

All  network  types  have  an  initial  synchrony  value  of  ≈0.2  which  corresponds  to  no  synchrony  apart  

from coincidental phase alignment. The weight sweeps for all models can be seen in figure 4.5. All 

models show a steady increase in synchrony until saturation is reached, which is at weight 0.11 for 

QIF networks and 0.05 for HH networks and trained QIF. For untrained QIF and HH models 

synchrony rises with connection strength but so too does the spread of the dots, indicating some 

variation in behaviour with these systems. For trained QIF models synchrony can be seen to increase 

smoothly with a critical region of connection strength in which synchrony rapidly increases, in 

accord  with  Kuramoto’s   findings.  The   connection   strength   is   effective   at   different   levels   from   the  

untrained PING models due to different sensitivities in the different architectures, Poisson process 

parameters, and scaling factors. However the behaviour is the key difference to note. There is a very 

sharp sigmoidal increase for trained QIF models in figure 4.5A, indicating little variation in 

behaviour with these learnt systems, unlike those in figure 4.5B and 4.5C. There are also no 

discontinuities.  

A coalition is a collection of nodes that are oscillating at the same unique frequency. In each 

simulation there may be several coalitions. The synchrony between nodes is best understood by 

comparing the number of coalitions that are present on each simulation. As we are using discrete 

intrinsic oscillatory frequencies selected from a Gaussian distribution, in one run for one weight 

setting there may be several nodes with the same intrinsic frequency. Therefore comparing the 

number of coalitions of oscillators sharing the same frequency during the experiment is only 

meaningful in relation to the number of coalitions that can be formed from the intrinsic frequencies 

on each trial. Figures 4.6A, 4.6B and 4.6C shows for trained QIF, untrained QIF and HH models 

respectively the number of coalitions of nodes sharing the same frequency. Green dots show intrinsic 

coalitions prior to running the simulations and red crosses show the number that results from the 

interaction between nodes when the simulations are run. Weight 0.013 for trained QIF networks, 

weight 0.05 for untrained QIF networks, and weight 0.015 for HH networks marks the critical point 

Kc beyond which the number of coalitions becomes less than the number of intrinsic frequency 

coalition. This indicates that nodes are affecting one another, pulling each other away from their 

natural frequencies towards a common frequency. It is interesting to note that prior to the point Kc 

both untrained QIF and HH network models display the ability to pull apart from their intrinsic 

frequency groups into more frequencies than prescribed by the initial Gaussian selection. The trained  
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QIF model reaches a point of full synchrony KL,  at  ≈0.02,  beyond  which  one  frequency  exist  for  all  

nodes and is maintained until saturation at 0.05. The untrained QIF model reaches the same point at 

≈0.04.  The  HH  model   displays   full   synchrony   at   ≈0.026   showing   only   one   frequency   group.   It   is  

 

 

 

Figure 4.6 Number of actual coalitions compared to number of intrinsic coalitions. 
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clear from figure 4.6C that KL for the HH model is much less well defined than for the QIF model in 

4.6B. 

Taking a closer look, plots of pairwise synchrony between a selected, representative node (node 1) 

and all other nodes in the network at particular weight points in the sweep are next discussed. Figure 

4.7 shows pairwise synchrony for the trained QIF network at weight 0.0172, a point after Kc. Each 

sub-plot shows the nodes in a coalition sharing the same frequency (note that for figures 4.7, 4.8 and 

4.9 plots for coalitions containing only one node are not displayed). For the trained QIF model, 

oscillators sharing the same frequency show major variations in phase. 

Figure 4.8 shows pairwise synchrony for the untrained QIF network at weight 0.07, a point after Kc. 

Each sub-plot shows the nodes in a coalition sharing the same frequency. As can be seen the 

behaviour is very precise with the nodes in each group moving closely together both in the same 

pattern and with little offset indicating matching phases as well. However they do not maintain a 

constant offset from the phase of node 1 indicating that whilst the frequency and phase of a coalition 

remains the same within itself, a more complex synchronised behaviour is at play in the network of 

nodes as a whole. A few desynchronous moments appear for the group with frequency 25.88 Hz 

indicating that the nodes themselves are not fully stable at this coupling strength. The HH model 

behaves a lot more noisily. Figure 4.9 displays the pairwise synchrony at weight 0.02, a point beyond 

Kc. Nodes sharing frequency 25.88 Hz show distinct phase offset, whereas nodes sharing frequency 

46.88 Hz do not appear very synchronous at all.  

Figure 4.10 shows the pairwise synchrony for the networks at their highest respective values for 

synchrony before saturation. The untrained oscillator networks show deviations from full synchrony 

in which the network separates into sub-groups, which although they diverge, show similar phase 

movements indicating mutual influence between the groups. The trained architectures show little 

group separation behaviour but instead single oscillators seem to separate into their own phases away 

from full synchrony. The same behaviours are manifest at lower global synchrony levels albeit that 

the deviations are greater. The behaviour may be intuitively explained by the fact that in the 

untrained architectures the individual intrinsic oscillatory frequencies of the nodes as well as the 

interaction between them are generated by the network architecture which forms a complete system, 

whereas in the trained architectures the individual intrinsic oscillatory frequencies are created by an 

external stimulus that is separate from the network system, does not receive dynamic feedback, and 

therefore facilitates more individual rather than group behaviour.  
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Figure 4.7 Pairwise synchrony for trained QIF at weight 0.0172. This is a point after Kc. 

Coalitions of 1 node are not shown. 
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Figure 4.8 Pairwise synchrony for untrained QIF at weight 0.07. This is a point after Kc. 

Coalitions of 1 node are not shown. 
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The pairwise synchrony for the untrained QIF network is shown in figure 4.10B. All nodes are 

synchronous with minor periodic deviations of up to 0.05 from maximum synchrony, resulting in 

general synchrony over 0.955 which is very high. A closer inspection of the spiking behaviour for 

this group shows that whilst they share a common main frequency their firing patterns are much 

noisier with other less well defined frequencies present. Similar behaviour is seen in figure 4.10C 

which shows the HH network at weight 0.04, a point at which all nodes share the same frequency. 

However, the scaling of the y-axis is larger than figure 4.10B showing greater deviations from full 

synchrony. Again on inspection of the firing behaviour shown in the raster plot in figure 4.11, a 

much noisier behaviour is seen in which other frequencies underlie the main frequency of 20.51 Hz. 

 

Figure 4.9 Pairwise synchrony for untrained HH at weight 0.02. This is a point after Kc. 

Coalitions of 1 node are not shown. 
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Figure 4.10 Pairwise synchrony at the point of maximum global synchrony reached. 
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4.9 Interaction between Trained and Untrained Nodes 
Given the marked difference in internal behaviour during the different critical coupling experiments 

for nodes that have been trained to oscillate to a learnt stimulus and those that have not, a further 

experiment is presented in this section that explores the interaction between the two types of node. 

The critical coupling experiment was again performed for QIF PING oscillators but this time on each 

simulation run 63 nodes were chosen from the set that had been evolved to respond to any stimulus 

and one node was chosen from the set that had been trained to only respond to a learnt stimulus. The 

 

Figure 4.11 The firing behaviour of an excitatory layer of a HH PING node. The node is present  

in a network of 64 PING nodes. The behaviour is noisy with other frequencies underlying the main 

frequency of 20.51 Hz. 
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intrinsic frequency for each node was chosen as before. The experiment presents a situation in which 

the entire network forms a complete dynamical system except one node which operates more 

independently. 

After each simulation at a given coupling strength the mean pairwise synchrony was calculated 

between the trained node and all other nodes. The pairwise synchrony was calculated using the 

equation in section 4.6 but setting N=2 and only using the phases for the trained node and one other 

node on each calculation. This was performed for all combinations of the trained node and all other 

nodes and then averaged. The mean pairwise synchrony was also calculated for each untrained node 

and all other untrained nodes. These were then averaged to give the mean pairwise synchrony 

between all untrained nodes. 

 

Figure 4.12 The mean pairwise synchrony between trained and untrained nodes. The red 

crosses show the mean pairwise synchrony between the trained node and all other nodes. Where each 

corresponding blue line starts is the mean pairwise synchrony between all other nodes except the 

trained node. 
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Figure 4.12 shows the results. The red crosses indicate the mean pairwise synchrony between the 

trained node and all other nodes on each run. Where each corresponding blue line starts is the mean 

pairwise synchrony between all other nodes except the trained node on the same run. As can be seen, 

at low weight levels before coupling starts to take effect the trained nodes are less synchronised to 

the untrained nodes than the untrained nodes are with each other. As coupling takes effect the trained 

nodes display more synchrony with the untrained node than the untrained nodes do with each other. 

From these results it can be concluded that the trained node is initially more isolated from the rest of 

the system, but as coupling strength increases the trained node entrains more untrained nodes to be 

synchronous with it than untrained nodes do with each other. 

4.10 Discussion 
The experimental results presented in this chapter show that suitably connected oscillatory 

populations of Type I neurons with saddle node bifurcations and Type II neurons with Andronov-

Hopf bifurcations broadly conform to critical coupling findings found with Kuramoto oscillators. 

However both models display much greater spectral complexity than that which the simple Kuramoto 

oscillator can capture. In fact, the more detailed and biologically plausible the model is then the 

greater the spectral complexity.  This greater complexity may have implications for neural simulation 

using the Kuramoto abstraction, as this simple model only partially captures the range of temporal 

phenomena which we find with the more biologically plausible spiking models.  

The critical coupling experiment for trained oscillators demonstrates that the collective behaviour is 

far better defined and more precise, compared to those that were not been trained. However, the 

internal dynamical behaviour differs dramatically between the trained and the untrained architectures. 

The untrained oscillator networks show deviations from full synchrony in which the network 

separates into sub-groups or coalitions, which although they diverge, show similar phase movements 

indicating mutual influence between the groups. The trained architectures show little group 

separation behaviour and influence, but instead single oscillators seem to separate into their own 

phases away from full synchrony. The behaviour may be intuitively explained by the fact that in the 

untrained architectures the individual intrinsic oscillatory frequencies of the nodes as well as the 

interaction between them are generated by the network architecture which forms a complete system. 

In contrast the individual intrinsic oscillatory frequencies of the trained architectures are created by 

an external stimulus that is separate from the network system, and hence is unable to receive dynamic 
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feedback so as to form a closed system. The latter facilitates more individualistic rather than group 

behaviour.  

Chapter 3 detailed the behaviour of trained oscillators, which ignored the dynamics inherent in the 

PING architecture but instead oscillated at the same frequency as the external stimulus. This may be 

regarded as a similar situation to photosensitive epilepsy. Photosensitive epilepsy is a form of 

epilepsy in which seizures are triggered by visual stimuli that form patterns in time or space. These 

may be visual effects such as flashing lights, bold, regular patterns, or regular moving patterns. With 

photosensitive epilepsy an external intermittent photic stimulation (IPS) entrains the neuronal 

populations at gamma frequencies. This is known as a photic following response (Parra et al., 2003). 

The trained oscillators presented in Chapter 3 exhibit similar behaviour in that an external stimulus 

controls the frequency of oscillation of the neural population. 

In a review article, Michel Le Van Quyen (2005) discusses the collective behaviour of neural 

assemblies when an epileptic focus is present. He points out that, the pathologically discharging 

neuronal population of the epileptic focus exhibits a state of decreased synchronisation with the rest 

of the system. This state may isolate the pathologically discharging neuronal population from the 

influence of activity in wider brain areas. The simulations presented in this chapter that used only 

trained oscillators presents an unrealistic situation in which each oscillator is like an individual 

epileptic focus. The results support the view that an epileptic focus is more disassociated from 

normal dynamics which may exhibit properties such as coalition formation. In this case each 

oscillator operates separately from the global dynamics. The critical coupling experiment which used 

one trained node and all other untrained nodes presents another situation in which there is a single 

epileptic focus amongst an otherwise normal system. Before critical coupling influence takes effect 

the epileptic focus is more separated from the behaviour of the rest of the system in line with Le Van 

Quyen’s  findings. 

Le Van Quyen further states that under normal conditions, control mechanisms exist in the brain to 

counteract the initial increase in epileptic synchrony. In epileptics these do not function. 

Measurements from pairs of electrodes show that populations near the epileptic focus may decrease 

their synchronisation before seizures. This decrease is the exact converse of phase-locking, and is 

best described as phase-scattering. As the pathologically discharging neuronal population is isolated 

from the influence of activity in wider brain areas, it facilitates the development of pathological 

recruitments with these local and disassociating populations. As global coupling influence is 
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increased in the experiment with a single epileptic focus (the trained node), the results presented in 

section 4.9 showed that normal untrained nodes in the system become more synchronous with the 

epileptic focus than they are averagely with each other. This indicates that more nodes are being 

entrained  by  the  epileptic  focus,  in  line  with  Le  Van  Quyen’s  findings. 

At the macroscopic level a prevalent feature of the brain activity is the presence of apparently 

metastable spatio-temporal patterns of neural activity distributed over many distinct brain regions (Le 

Van Quyen, 2005). With regard to epilepsy, Parra et al hypothesise: 

"the enhancement of synchrony in the gamma band of photosensitive patients may represent a loss of 

control of the brain over a high-frequency oscillatory process that normally operates to transiently 

connect neural assemblies involved in the cerebral cortex." (Parra et al., 2003) 

There has been growing interest in neuroscience communities in seemingly metastable dynamics that 

serve to transiently connect neural assemblies as well as the possible relationship between these 

dynamics and brain function. This chapter has shown how a normally behaving dynamical system of 

oscillatory neural nodes will, given enough coupling influence between the nodes, form sub-groups 

or coalitions of connected neural assemblies. The next chapter shall investigate transiently 

connecting neural assemblies and the metastable dynamical mechanisms that form them. 
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5 Metastability and Inter-Band Frequency 
Modulation 

An important question in neuroscience is how localised neural activity gives rise to complex 

cognitive functions organised at a global level (Sporns et al., 2004; Tognoli and Kelso, 2011; 

Shanahan, 2012). Somehow the brain must orchestrate neural processes in different cortical areas so 

that they form coordinated coalitions. An influential candidate for the mechanism underlying 

coordination and communication among brain areas is synchronous oscillation over multiple 

frequency bands (Fries, 2005; Varela et al., 2001). However, the question of how coordinated 

coalitions of brain processes form and break apart remains open.  

This chapter, builds upon a growing body of modelling work supporting the view that the brain, 

regarded as a dynamical system, is inherently metatstable, and suggests that metastable dynamics are 

responsible for producing transient episodes of synchrony between different neural areas (Cabral et 

al., 2011; Shanahan, 2010; Wildie and Shanahan, 2011; Cabral et al., 2013; Hellyer et al., 2014).  

5.1 Brain Rhythms and Dynamical Organisation 
As discussed in chapter 2, periodic activity is found in the brain when taking measurements with 

EEG and MEG equipment. The various different rhythms that have been identified have diverse 

associations. Thalamocortical networks  display  increased  delta  band  (0.1−3.5  Hz)  power  during  deep  

sleep (McCormick, Sejnowski and Steriade, 1993).   Theta   (4−7.5   Hz)   activity   is   increased   during  

memory encoding and retrieval (Basar et al., 2000).  Alpha  band  (8−13  Hz)  changes  are  associated 

with attentional demands (Klimesch, 1999).  Beta   (14−30  Hz)  oscillations  have  been   related   to   the  

sensorimotor system (Pfurtscheller, Stancak Jr and Neuper, 1996). Of all the frequency bands the role 
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of gamma (30-80 Hz) is thought to be most extensive and is hypothesised to provide a mechanism 

that underlies many cognitive functions such as: attention (Jensen, Kaiser and Lachaux, 2007), 

associative learning (Miltner et al., 1999), working memory (Siegel, Warden and Miller, 2009), the 

formation of episodic memory (Lisman, 2005), visual perception (Fries et al., 2001), and sensory 

selection (Fries et al., 2002).   

The evidence suggests that basic modes of dynamical organisation are reflected in brain rhythms 

(Steriade, Jones and Llinás, 1990). In addition the ‘communication   through   coherence’   hypothesis  

proposes that such synchronisation opens up communication channels between distant neuronal 

groups (Fries, 2005), providing optimal conditions for information transfer (Buehlmann and Deco, 

2010). With these insights in mind it has also been suggested that transient periods of 

synchronisation and desynchronisation provide a mechanism for dynamically integrating and 

forming coalitions of functionally related neural areas (Shanahan, 2010).   

5.2 Transient Dynamics 
One way of studying neural dynamics is through modelling and simulation. The previous chapter 

demonstrated a close similarity between populations of neurons that collectively oscillate and simple 

oscillator models. Transient dynamics have been demonstrated in systems of phase-lagged, delayed 

and pulse-coupled oscillators that have been organised into a modular community-structured small-

world networks akin to those found in the brain (Shanahan, 2010; Wildie and Shanahan, 2012). 

These systems exhibit interesting phenomena such as metastability, chimera-like states and high 

coalition entropy. Metastability is quantified by the variance of synchrony within an individual 

oscillator module over time, averaged for all modules in the system, and so characterises the 

tendency of a system to continuously migrate between a variety of synchronous states. Fixing time 

and calculating the variance across modules gives an index of how chimera-like the system is, 

indicating the level of spontaneous partitioning into synchronised and desynchronised subsets. 

Coalition entropy measures the variety of metastable states entered by a system of oscillators and is 

calculated from the number of distinct states the system can generate and the probability of each state 

occurring. As a collection these measures capture the ability and tendency of a system to best explore 

the space of dynamic synchronous coalitions. In the aforementioned work in which these transient 

dynamics were demonstrated, a key area within the oscillator network parameter space was identified 

where the combination of these measures is optimal. An embodied neural oscillator system tuned to 
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such a sweet spot would facilitate versatile exploration, integration and communication of 

functionally related areas throughout the behavioural problem solving process. However, the 

aforementioned work made use of simple abstract oscillator models rather than neural oscillator 

populations. The previous chapter demonstrated that neural systems display greater spectral 

complexity than simple abstract oscillator models, and we shall now discuss this. 

5.3 Spectral Complexity in Neural Systems 
It is increasingly common for simple oscillator models to be used as abstractions of oscillating neural 

populations in brain modelling (Breakspear, Heitmann and Daffertshofer, 2010). Whilst there is a 

greater perceived affinity to neural systems when moving from phase-lagged, to delayed, to pulse-

coupled oscillator systems, the previous chapter experimentally demonstrated that such oscillator 

models display close behavioural similarities to networks of oscillating neural populations. However, 

these simulations illustrate how neural models display greater spectral complexity during 

synchronisation than more abstract oscillator models, with several oscillatory frequencies coexisting 

within an individual neural oscillator population. The chapter explored the relationship between 

simple oscillator models and their neural population cousins by emulating neurally the Kuramoto 

critical coupling experiment (Kuramoto, 1984) which showed an increase in synchrony as connection 

strength is increased in a uniformly connected network of simple oscillators. It was demonstrated that 

at the point of maximum synchrony the neural systems not only displayed several coexisting 

frequencies within an individual oscillator population but that the system also showed deviations 

from a measure of full synchrony likely caused by these additional fluctuating influences.  

The spectral complexity of neural systems has been observed in vivo (Steriade, 2001). It has been 

hypothesised that slower oscillations provide a framework for other faster oscillations to operate such 

that fast oscillations communicate content while slow oscillations mediate transient connectivity 

(Nyhus and Curran, 2010). Very large networks are recruited during slow oscillations whereas higher 

frequency oscillations are confined to a small neuronal space (Buzsáki and Draguhn, 2004). 

Widespread slow oscillations modulate faster local events. Some such interactions have received 

particular attention, for example the nesting of gamma in theta during memory formation (Axmacher 

et al., 2006; Roopun et al., 2008). However, the phenomenon as a whole is not well understood. 

Within the same neuronal structure, neighbouring frequency bands, which are typically associated 

with different brain states, coexist but compete with each other. However, several rhythms 
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temporally coexist not only in the same structure but also in different structures and interact with 

each other (Buzsáki and Draguhn, 2004).  How these different frequencies affect each other across 

populations is a question demanding further exploration, which is the aim of this chapter. 

5.4 Metastability and Frequency Modulation Experiment 

5.4.1 Experimental Setup 

Much research has focused on measuring the effect when different populations of neurons 

synchronise to the same frequency (Buehlmann and Deco, 2010; Wildie and Shanahan, 2012; 

Womelsdorf et al., 2007), with further interest in correlations across frequency bands, as for example 

assessed by the mean local time-frequency energy correlation (Lachaux, Chavez and Lutz, 2003). It 

has been shown that, within a single neural population, coexisting oscillatory frequencies in different 

bands start, stop and restart. The simulations in this chapter demonstrate that the frequency of an 

oscillating population does not remain at a constant but may speed up and slow down over time. In 

other words the frequency fluctuates. 

The aim of this chapter is to understand how the fluctuation in the frequency of one neural 

population’s   oscillation   over   time   affects   the   other   neural   populations   it   is   connected   to.   The  

approach taken is to build simulations of many neural oscillator populations, with each oscillating at 

a different intrinsic frequency. Fluctuations in the oscillatory frequency of each population become 

manifest when the populations are connected to each other. The results in this chapter demonstrate 

that the fluctuation in frequency in one neural population modulates the fluctuation in frequency in 

other neural populations, and that this influence increases with greater structural connectivity 

between the populations. It is shown that, this interaction of fluctuating frequencies in the network as 

a whole is able to drive different populations towards episodes of synchrony. 

A   number   of   different   measures   are   then   used   to   assess   the   network’s   overall   dynamics.   The  

frequency modulation between neural oscillators, averaged in the network as a whole, is measured 

using the mean intermittent frequency correlation. This is obtained by capturing in detail the 

intermittent fluctuating frequencies in each oscillator as fragments of times series (time series 

strands), and correlating these strands against other such stands, across bands, and across neural 

populations. This correlation measure is averaged for the network as a whole in order to give the 

global measure of modulatory influences in the network. Coalition entropy measures the variety of 
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metastable states entered by a system of oscillators and is calculated from the number of distinct 

states the system can generate and the probability of each state occurring. By identifying high levels 

of mean intermittent frequency correlation and coalition entropy it is possible to discern whether the 

neural  populations   in  a  network  are  modulating  each  other’s  oscillatory  behaviour  so  as   to  explore  

many different coalitions. If the network also displays levels of synchrony (section 4.6) that promote 

information transfer during coalition formation, it is claimed that the network exhibits metastability. 

This is characterised by the tendency of a system to continuously migrate between a variety of 

synchronous states.  

5.4.2 Extraction of Intermittent Frequency Strands 

The work presented in this chapter aims at assessing the correlation between the fluctuating 

frequencies in different neural oscillators that are connected together in a network. In order to 

achieve this it is first necessary to extract the instantaneous frequency responses for each neural 

oscillator at each moment in time during a simulation. The standard techniques for doing this are to 

either use a short-time Fourier transform or a wavelet transform. To perform either first requires 

converting the firings of an oscillatory neural population into a continuous time signal upon which 

one of these transforms can be performed. Only the excitatory layer in a neural oscillator is used 

when producing this signal. The signal is obtained by first binning the number of spikes at each 

moment in time for the excitatory layer, and then passing a Gaussian smoothing filter over the data. 

Finally the signal is centred around its mean to obtain the continuous time signal upon which the 

transform can be perfromed.  

Both Fourier and wavelet based approaches for extracting the time-frequency information from a 

signal suffer from shortcomings due to the time-frequency uncertainty principle (Yu et al., 2005). A 

Gabor wavelet transform has been chosen for use in this work, because the responses of Gabor 

wavelets have optimal properties with respect to the time-frequency uncertainty principle (Yu et al., 

2005). The Gabor wavelet used had a centre frequency of 0.6 Hz and was applied with a continuous 

wavelet transform using scales from 1 to 100 in increments of 0.1, and a delta of 0.001. Figure 5.1A 

shows the scalogram of a wavelet transform taken from the excitatory layer of a neural oscillator that 

was placed in a network of oscillators, with each oscillator oscillating at a different intrinsic 

frequency. In this setup there is a given probability of connecting each oscillator to another in the 

network, and a given synaptic connection weight for the connections formed between oscillators. 

Figure 5.1B shows a raster plot of the firing behaviour of the same excitatory layer between time 
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points 1000 ms and 1500 ms in the simulation. It can be seen that the spacing of the bursts of firing 

between 1050 ms and 1150 ms is wider and thus at a different, slower frequency to the spacing of the 

bursts of firing between 1200 ms and 1275 ms. The wavelet response to the slow and then faster 

bursting can be seen as a change from low to high frequency on the scalogram in the same temporal 

area and around the frequency range from 30 Hz-50 Hz. These responses are deviations from the 

regular 33 Hz bursting that the PING oscillator was evolved to fire at and are due to the interaction 

with the other oscillator nodes. 

The Gabor wavelet produces a blurred impulse response around given frequency responses at each 

point in time. The blurring from a Gabor wavelet is in the form of a Gaussian (Yu et al., 2005), as 

illustrated by a time slice at time point 1460 ms shown in figure 5.1C taken from the scalogram in 

figure 5.1A. Further techniques have to be applied to the transformed data in order to extract the 

instantaneous frequency information. Standard ridge and skeleton methods do not perform well when 

there are many components, some of which remain very close for a while and separate again, or 

when they can die out, or when new ones can appear from nowhere (Daubechies and Maes, 1996). 

As can be seen by the scalogram in figure 5A the data in the work presented here is of this type. 

Drawing upon the Gaussian nature of the impulse response from the Gabor wavelet, a technique of 

fitting a sum-of-Gaussians model to the transformed data at each point in time is applied (Yu et al., 

2005). Figure 5.1C shows such a fitting. Identifying the means and magnitudes of the means of the 

fitted Gaussians gives the instantaneous frequencies and their amplitudes respectively. 

The next stage in preprocessing the data requires forming a time series of the instantaneous 

frequencies as they fluctuate over time, what I call a strand. These fluctuating frequency responses 

may also be intermittent due to the frequency response dropping out and starting again. Zero values 

are substituted into the time series strands during the drop out moments to indicate the absence of a 

frequency response at those times. There may be many coexisting frequencies for each neural 

oscillator at each time point in a simulation, and therefore many coexisting strands. To obtain these 

strands, after the instantaneous frequencies at each point in time for an oscillator are calculated, the 

movement of each frequency is tracked over time so as to link them together into a single time series 

fragment.   
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Figure 5.1 Extraction of frequencies from population firings. (A) Scalogram of the excitatory 

layer of a neural PING node that has been connected to other nodes each oscillating at a different 

frequency. (B) Firing behaviour of the same excitatory layer between 1000 ms to 1500 ms in the 

simulation. Note how the spacing in between the burst of firing is reflected as different frequencies in 

the scalogram in panel A. (C) Time slice of the scalogram in panel A taken at 1460 ms. The red line 

shows the time slice and the green lines show different Gaussians, the sum of which fits the red line. 

Note that the scales of the x-axis in C relate to the pseudo frequencies in A, with the lower scale 

being the higher frequency. 
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The algorithm for forming the frequency time series strands has three parts. The first part is simply to 

sequence the nearest frequencies in time into a strand as follows: 

 

T=start_time. 

while T is not equal to end_time. 

for each unassigned instantaneous frequency at time point T 

Create a new strand containing that frequency. 

end 

T=T+1. 

while there are strands and frequencies within the distance limit L. 

Find the strand at time point T-1 with the closest frequency to one  

of the instantaneous frequencies at time point T.  

if the frequency is within limit L  

Add the frequency to the strand and remove the strand from further 

consideration until the next iteration. 

end  

end 

end 

 

An oscillator may be in a different state at different times. A state is described as several coexisting 

frequency responses in different frequency bands present at one time. The state may evolve over time 

such that the response in each frequency band fluctuates. Further to this, the state may dramatically 

change such that a frequency response in any particular band dramatically changes such that there is 

no smooth transition from one moment in time to the next. Such dramatic changes are called 

bifurcations. It is necessary to cope with bifurcations in the oscillator behaviour when an oscillator in 

a particular state A1, flips to another state B1, and then flips again to a state A2 such that states A1 

and A2 have the same number of coexisting frequencies and these frequencies have approximately 
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the same values. Hence the system returns to its original state (A1) after the middle state B1. In each 

state there may be several coexisting frequency strands. It is desirable that the strands in the original 

state A1 and its return state A2 after the middle state, are stitched together so as to maximise the 

strand length and as a result the correlation. The distance between the frequencies in the strands in 

the state A1 and state A2 may be near enough within a limit L to make a direct match as in the 

previous algorithm, due to the fact that there is a close continuation between the two. However, there 

are situations in which the values of the frequencies in A2 are not near enough for direct matching, 

but instead have values similar to how state A1 would have been at that time if the bifurcations had 

not occurred and state A1 had instead continued developing. That is to say, whilst being the same 

state as A1, state A2 is in a later stage of development. In such a situation regression is used to 

project where the frequencies of strands in the original state A1 would have progressed to, and match 

these projections to the frequencies of the strands in A2. A maximum frequency distance limit L is 

applied as before on this projected matching.  

In order to stitch states in this way, all the strands which share the same start time are first grouped 

together so as to identify them as being in the same state. The state matching algorithm then 

preferentially matches states nearest to each other whose strands have the closest frequencies or 

projected frequencies. There is a maximum time limit between states for which such stitching us 

allowed to occur. In order to get the best matching between states, the algorithm is first performed 

with the constraint that stitched states must contain the same number of strands, and then performed 

again without this constraint. 

After the state stitching has been carried out the individual strands that are contained within the states 

are extracted, as we only consider pairs of individual strands during correlation. The strands are time 

series of fluctuating frequencies sequenced by closeness. Each strand will have a start and end and 

may contain zero values in its time series where the frequency dropped out due to a bifurcation.  

5.4.3 Mean Intermittent Frequency Correlation 

For each pair of oscillators, m and n, there is a collection of fluctuating frequency strands scattered 

over the frequency domain and stretching over time. Each strand in oscillator m is correlated with 

each strand in oscillator n, for all oscillator combinations in the network. This is done by passing a 

100 millisecond window across time in incremental steps of 1 millisecond. In each of these windows 

the time series data is taken for all pairs of strands i and j, where i and j are from different oscillators 
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m and n respectively. For each pair of windowed strands, time points are removed from each strand 

where both strands do not have a response at that time point in the window, or when both the 

frequencies in the strands at one time point are the same as at the previous time point. This results in 

two time series strands for the window at time t, wm,i(t) and wn,j (t). Both are the same length and are 

potentially shorter than the window size. Each time series only contains data where both original 

strands have a frequency response and they are both fluctuating. These two series are then correlated. 

Correlations are only selected where the coefficient is greater than or equal to 0.5 or the coefficient 

of the anti-correlation is less than or equal to -0.5, and the p-value for either is less than 0.05. By 

randomising the order of one of the series and performing the same correlation and selection process 

a phantom correlation is obtained. Phantom correlations are used to confirm the importance of the 

measure of real correlation found. For both types of correlation the mean intermittent frequency 

correlation is calculated as follows:  
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where n and m are oscillators, I(t) and J(t) are the total number of strands in the window at time t for 

each oscillator respectively, and i and j are particular strands within each oscillator. coef defines the 

value of a significant correlation coefficient as previously described. W(t) is the length of the two 

series wm,i(t) and wn,j (t), that only contain time points that have a fluctuating frequency response in 

both original windowed strands. 100 is the length of the window. Thus the significant correlation 

coefficient is normalised according to the length of the two series in that window. t is the time of the 

particular window and tmax is the length of the simulation time. The metric calculates all pairwise 

significant frequency correlations between all oscillators, normalises them by their length, and 

averages them over time. 

5.4.4 Coalition entropy 

Coalition entropy measures the variety of metastable states entered by a system of oscillators 

(Shanahan, 2010). Coalition entropy is only calculated using the excitatory neuron layers in the 

oscillators. As with the synchrony metric of section 4.6, the phase of each oscillator is calculated at 

each time point t using a Hilbert transform. For coalition entropy, clustering was then performed at 

each time point by picking the two most synchronous oscillators/coalitions using the first equation 

defined for the synchrony metric. Once a pair was identified they were joined to form a new coalition, 
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and  the  new  coalition’s  mean  complex  exponential  phase  was  calculated  for  use   in   the  future  most  

synchronous pair selection process. A threshold of 0.05 from full synchrony was used to limit the 

cluster merging. The process was repeated until no oscillators/coalitions fell within the threshold to 

allow merging into a new coalition. 

Having identified the synchronous coalitions at each point in time, the probability p(s) of each 

coalition s occurring was calculated from the number of times it appeared throughout the simulation. 

The coalition entropy Hc was then calculated as follows: 
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where |S| is the number of possible coalitions given the number of oscillators in the system given the 

set of all possible coalitions S. 

5.4.5 Results 

A series of experimental simulations were performed in each of which 10 neural PING oscillators 

were chosen from the set that had been evolved with intrinsic frequencies ranging from 30Hz to 

50Hz. The probability of one oscillator providing neural input to another was determined with a 

given probability C. The probability C was the same for all oscillator to oscillator connections in the 

same experimental simulation. Given that a connection was established from oscillator n to oscillator 

m the excitatory neurons in oscillator n would form synaptic connections to the excitatory neurons in 

oscillator m. The number of synaptic connections formed was 20 percent of the 40000 possible 

synaptic connections from the 200 excitatory neurons in oscillator n to the 200 excitatory neurons in 

oscillator m. These were selected at random. For all synaptic connections formed the weight of the 

synapse was set to W. The value for W and C were randomly chosen at the beginning of each 

experimental simulation from a uniform distribution between 0 and 1. 250 simulations were 

performed for the QIF neural model, 250 simulations for the IZ neural model, and 250 simulations 

for the HH neural model. As the weight and connection probability for each simulation were chosen 

at random these data points are scattered throughout the parameter space. The 250 simulations thus 

constitute a scattered sweep of weight and the inter-oscillator network connection scarcity. Figures 

5.2-5.7 show various measures taken from these 250 simulations of QIF, IZ and HH neuron models. 

These are analysed and discussed in detail below. In each of these figures a surface has been fitted to 

the underlying trend of the 250 data point for each measure depicted.  
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Throughout each simulation, external stimulus input was provided to each neural oscillator from a 

Poisson  process  with  parameter  λ  =  4.375.  For  each  model,  the  inputs  were  scaled  in  order  to  provide  

sufficient stimulus to induce firing. Each experiment was run for 2000 ms of simulated time. After 

each experiment, the firing activity of the excitatory layers in each oscillator was used to calculate 

synchrony, coalition entropy and the mean intermittent frequency correlation as described above. The 

first 500 ms of each simulation were discarded in the calculation of these metrics to eliminate initial 

transients. 

Figures 5.2A, 5.2B and 5.2C show the synchrony through the parameter sweep for QIF, IZ and HH 

models respectively. Unsurprisingly, and in accord with the findings of the previous chapter, 

synchrony increases as connectivity increases. At their maximum value for synchrony the QIF and 

HH neural systems exhibit deviations from full synchrony. The value of 0.25 synchrony in the area 

of low weight and low connection probability represents no synchrony at all except coincidental 

alignments in phase. It is interesting to note that the IZ model shows a critical area in which 

synchrony increases dramatically as connection strength increases, until it eventually completely 

flattens out at full synchrony. Figures 5.2D, 5.2E and 5.2F show the coalition entropy through the 

parameter sweep for QIF, IZ and HH models respectively. The trend for coalition entropy takes the 

reverse form to synchrony, decreasing as synchrony increases, and the oscillators become more 

aligned in phase for more of the time. The measure of coalition entropy used cannot distinguish 

coincidentally synchronous coalitions from those that are genuinely coupled. However, when 

coalition entropy is contrasted with the graphs for synchrony we can get an idea of what is happening. 

Regions of the parameter space with low weight and low connection probability exhibit high 

coalition entropy, but the same regions present low values for synchrony. This suggests that the many 

coalitions that appear are constituted by very short coincidental alignments in phase that are not 

capable of significant information transfer (Buehlmann and Deco, 2010). The mid parameter space 

area shows fairly high values for synchrony, indicating the capacity for substantial information 

transfer, as well as high coalition entropy indicating transfer between many different groups at 

different times. The region of the parameter space in which the weight and connection ratio are high 

facilitates more information transfer but less variation in coalitions. It is interesting to note that the IZ 

model shows a much more pronounced slope decreasing coalition entropy as connection strength 

increases until it levels of with no coalition entropy. This levelled off area appears as an artefact on 

all IZ measures. 
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Figure 5.2 Synchrony and coalition entropy. Each simulation uses 10 neural PING oscillator nodes 

with the connection probability and weight being the same between all nodes on a single simulation 

run. Each separate simulation uses a different connection probability and weight drawn from a 

uniform distribution between 0 and 1.  (A) The overall synchrony in the networks using the QIF 

neuron model, (B) same as panel A for the IZ neuron model. (C) same as panel A for the HH neuron 

model. (D) The coalition entropy in the networks using the QIF neuron model, (E) same as panel D 

for the IZ neuron model. (F) same as panel D for the HH neuron model. 
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Figures 5.3A, 5.3B and 5.3C show 

the average number of coexisting 

frequencies in a single oscillator at 

any one time in each simulation for 

QIF, IZ and HH models. 

Interestingly, for the QIF and IZ 

models, as the causal influences 

increase through stronger weights 

and greater connectivity, the 

number of coexisting frequencies 

rises. This indicates that stronger 

causal interactions between neural 

populations, that otherwise 

oscillate at a single intrinsic 

frequency, are a source of 

increased spectral complexity. In 

the high connectivity area in which 

synchrony is maximal the IZ 

model shows low numbers of 

coexisting frequencies, indicating 

that the system is converging on a 

single synchronous frequency. The 

HH model shows a dip in the mid 

area of the parameter space, after 

which the number of coexisting 

frequencies rises. Whilst this latter 

area also demonstrates that causal 

interactions increase spectral 

complexity in areas where there 

are stronger inter-oscillator 

influences, it is interesting to note 

that in the area of weaker 

 

Figure 5.3 The number of coexisting frequencies. (A) The 

average number of coexisting frequencies per oscillator at 

each time point in the networks using the QIF neuron model, 

(B) the same as panel A for the IZ neuron model, (C) the 

same as panel A for the HH neuron model.  
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influences this model also generates a large number of coexisting frequencies. This latter 

phenomenon will be elucidated later. 

Taking a look at the number of significant correlations found through the parameter sweep, figures 

5.4A, 5.4B and 5.4C show that QIF, IZ and HH models display an increased number of correlations 

as the synaptic weight and connectivity increases, although the HH model has a less pronounced 

incline. The increase has a similar trend to that of synchrony. The data indicate that correlated 

 

Figure 5.4 The number of correlations found. (A) The average number of mean intermittent 

frequency correlations found for networks using the QIF neuron model, (B) same as panel A for the 

IZ neuron model. (C) same as panel A for the HH neuron model. (D) The average number of 

phantom mean intermittent frequency correlations found for networks using the QIF neuron model, 

(E) the same as panel D for the IZ neuron model, (E) the same as panel D for the HH neuron model. 
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fluctuations in frequency imply more episodes of synchrony, suggesting that the fluctuating 

influences between oscillators are moving each other towards synchronous behaviour. As the number 

of significant correlations is so high, we can conclude that this influence works across frequency 

bands.  To  control   for   coincidental   (“phantom”)  correlations,   the  number  of   significant   correlations  

found compared to the number found when randomising one of the time series before correlating is 

presented in figures 5.4D, 5.4E and 5.4F. We can see that for the QIF and IZ models, although many 

significant phantom correlations are found and they follow the same trend, the number found is an 

order of magnitude less than the number of correlations found in the original data. The HH model 

displays a similar ratio between real and phantom correlations. However, the region of low weight 

and connection probability shows large numbers of correlations in line with the greater number of 

coexisting frequencies found in that area in figure 5.3C. 

The mean intermittent frequency correlations are shown in figures 5.5A, 5.5B and 5C for QIF, IZ and 

HH models respectively. As causal influence between oscillators increases in the network this 

correlation measure increases, meaning that correlation directly reflects causation in this case. 

Figures 5.6A-5.6F show that when separating these data into positive correlations and anti-

correlations both follow the same trend. The metric not only identifies the significant correlations but 

also normalises each of these correlations by the length of the intermittent fluctuating frequency time 

series. The resulting values are therefore always much less than the number of correlations. The 

mean intermittent frequency correlation shown for phantom correlations in figures 5.5D, 5.5E and 

5.5F is very low, peaking at around 7 compared to real correlations, which peak at around 140. The 

ratio is double that found for  the  simple  ‘number  of  significant  correlations  found’  of  figure  5.4  and  

so is even stronger justification for the claim that the correlations found are significant. For the HH 

model, the area of low weight and connection probability shows small mean intermittent frequency 

correlation  values,  in  contrast  with  the  corresponding  ‘number  of  correlations  found’  shown  in  figure  

5.4C due to greater number of coexisting frequencies seen in figure 5.3C. This is because, although 

significant correlations are found, they are being normalised to a lesser value by length, meaning that 

these are very short time series. This is further reason for discarding high coalition entropy values in 

this area, on the grounds that they are not due to any consequential interactions but are merely 

coincidental. The performance of HH networks around this low parameter region is therefore very 

erratic compared to the behaviour in the mid and high connectivity regions which exhibits stable and 

modulatory influences. 



Metastability and Frequency Modulation Experiment    83 

 

83 

 

 

 

 

 

 

Figure 5.5 Mean intermittent frequency correlation. (A) The mean intermittent frequency 

correlation for networks using the QIF neuron model, (B) the same as panel A for the IZ neuron 

model, (C) the same as panel A for the HH neuron model. (D) The phantom mean intermittent 

frequency correlation for networks using the QIF neuron model, (E) the same as panel D for the IZ 

neuron model, (F) the same as panel D for the HH neuron model. The mean intermittent frequency 

metric selects correlations where the coefficient >=0.5 and p <=0.05, and all correlations are 

normalised by the length of the time series strands.  
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Figure 5.6 Separation of positive and anti correlations. (A) Positive mean intermittent frequency 

correlation for networks using the QIF neuron model, (B) the same as panel A for the IZ neuron 

model, (C) the same as panel A for the HH neuron model. (D) Anti mean intermittent frequency 

correlation for networks using the QIF neuron model, (E) the same as panel D for the IZ neuron 

model, (F) the same as panel D for the HH neuron model.. The mean intermittent frequency metric 

selects correlations where the coefficient >=0.5 and p <=0.05, and all correlations are normalised by 

the length of the time series strands.  
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In figures 5.7A, 5.7B and 5.7C, the number of correlations found has been normalised by the number 

of coexisting frequency time series in all oscillators on each run. These figures show, on average, 

how many frequencies in other oscillators each individual frequency is interacting with at each time 

point. The  mid  area  of  figures  5.3A,  5.3B  and  5.3C  show  ≈3  coexisting  time  series  per  oscillator  at  

each time point. The mid and high parameter region in figures 5.7A-5.7C show many more than the 9 

interactions we would expect if each frequency was only interacting with frequencies in other 

oscillators that are in the same frequency band. We can safely conclude from this that frequencies in 

different neural populations communicate across bands. This type of complexity is not manifest in 

simple oscillator models, a shortcoming that is most evident at high levels of synchrony when simple 

oscillator models, unlike systems of neurons, display only a single shared frequency. 

Figures 5.7D-5.7F show a combination of mean intermittent frequency correlation with the coalition 

entropy. To obtain this combination the mean intermittent frequency correlation and the coalition 

entropy were normalised, and multiplied the results together. For QIF and IZ models, there is a range 

from weight value 0.35 and connection probability 1 to weight value 1 and connection probability 

0.35 at which the amount of correlation between fluctuating frequencies across oscillators coincides 

with a measure of coalition entropy such that they are at a combined peak. This area, in which the 

two metrics are balanced, facilitates metastable dynamics in which there is a richness of influence 

and interaction between different oscillators   and   across   frequency   bands   modulating   each   other’s  

behaviour, enabling the exploration of a large repertoire of different coalitions. It is noteworthy that 

there is a linear relationship between weight and connection probability at which this is best 

facilitated. This indicates that both connection probability and synaptic weight have a complementary 

effect upon metastability. The medium-to-high level of synchrony in this area further suggests that 

the conditions for information transfer between populations are fulfilled (Buehlmann and Deco, 

2010). These traits are desirable in order to facilitate a system versatile at exploration, integration and 

communication between functionally related areas during cognitive processing (Chialvo, 2010; Kelso, 

2012; Shanahan, 2012). 
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Figure 5.7 Average number of correlations, and the peak of modulated exploration.  (A) The 

average number of mean intermittent frequency correlations found for networks using the QIF 

neuron model, (B) the same as panel A for the IZ neuron model, (C) the same as panel A for the HH 

neuron model. The number of correlations found has been normalised by the number of coexisting 

frequency time series in all oscillators on each simulation run. The figure shows, on average, how 

many frequencies in other oscillators each individual frequency is interacting with at each time point. 

(D) and (E) and (F) show a combination of mean intermittent frequency correlation and coalition 

entropy for the QIF, IZ and HH neuron models respectively. The values of both metrics have been 

normalised before multiplying them together. The graphs emphasise a peak area, and in this area 

there is also a linear relationship between weight and connection probability. This peak area 

facilitates modulated exploration of a large repertoire of different coalitions. 
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5.5 Discussion 
A general rule of thumb for oscillator systems is that greater connectivity produces more synchrony. 

Unlike simple oscillator models, systems of spiking neurons display great spectral complexity with 

many coexisting frequencies within a single oscillator at one time. The work presented in this chapter 

demonstrates that this complexity increases with connectivity, not only in the number of coexisting 

frequencies but also in the amount of interaction across frequency bands. As causal interactions 

increase, so does correlation between these fluctuating frequencies, as well as the tendency towards 

more and longer episodes of synchrony and information transfer, which implies that they are 

modulating each other towards communication. 

The focus of this chapter is the theory of metastability in which neural behaviour produces episodes 

of synchronisation and desynchronisation between oscillating populations, for which the combined 

effect amongst a collection of oscillators is to explore many different coalitions over time. The 

results presented identify an area in the weight and connectivity space at which spiking neuron 

models are at a balance in which coalition entropy is exhibited due to the influential modulation 

between populations through their oscillatory behaviour. In this area of balance the neural systems 

influence each other across frequency bands in a way that promotes exploration of, and 

communication between, coalitions. This is because the fluctuating oscillatory frequencies in each 

neural population modulate each other so as to drive the system towards episodes of synchrony 

between different neural populations, enabling communication between them. Whilst doing this, the 

variation in synchronous coalitions of neural populations over time is kept very high, and hence this 

area of the connectivity space may be described as encouraging exploration.  

A dynamical system whose component parts interact so as to direct the system through varieties of 

coalitions would form a good basis for contextual exploration as well as integration among, and 

communication between, functionally related areas during cognitive processing. Further to this, 

maintaining a large repertoire of synchronous coalitions promotes versatile exploration of novel 

functional combinations, a desirable trait when problem solving. 



88 Metastability and Plasticity 

 

88 

 



Transient Synchronisation and Brain Coordination    89 

 

89 

 

6 Metastability and Plasticity 

The previous chapter demonstrated how metastable dynamics that support transient synchronous 

coalition formation naturally arise in networks of spiking neurons. Using computer simulations, this 

chapter extends this finding by establishing that networks of spiking neurons connected according to 

a modular small-world topology give rise to heightened levels of metastability. Further to this, the 

results presented show that such modular small-world topologies form as a natural consequence of 

synaptic plasticity being present in the neural network during the interaction between many different 

oscillating neural populations. 

 

6.1 Transient Synchronisation and Brain Coordination 
There is extensive empirical evidence that shows the tendency for several different brain areas to 

synchronise for short amounts of time, and that different synchronous groups appear at different 

times. For example, Betzel et al (2012) studied fluctuations in functional connectivity of human 

resting state networks from EEG recordings. They report that such fluctuations occurred on a time 

scale of tens to hundreds of milliseconds, and involved spatially local and remote sites, resulting in 

fast reconfigurations of network states. It has been suggested that such transient periods of 

synchronisation and desynchronisation provide a mechanism for the formation of coalitions of 

functionally related neural areas (Chialvo, 2010; Kelso, 2012; Shanahan, 2012). In addition, the 

‘communication   through   coherence’   hypothesis   proposes   that   synchronisation   opens   up  

communication channels between distant neuronal groups (Fries, 2005), providing optimal 

conditions for information transfer (Buehlmann and Deco, 2010). Computer models that reproduce 

the fluctuations in human resting state networks by using metastable systems of coupled oscillators 

lend further support to the hypothesis that transient periods of neural synchronisation and 
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desynchronisation are important (Cabral et al., 2011; Cabral et al., 2013; Hellyer et al., 2014). Whilst 

it remains an open question what the underlying mechanism is that gives rise to these observed 

phenomena, the previous chapter goes some way in demonstrating that intrinsic metastable dynamics 

that appear in simulation may be the cause of the observed phenomena in vivo. However, it is unclear 

what structural and functional characteristics are required to facilitate such apparently metastable 

dynamics. An investigation of the required functional and structural characteristics are the subject of 

this chapter. 

6.2 Local and Global Processing 
Kelso and Tognoli  ( 2007) argue that the fundamental property of complex systems that operate in a 

‘metastable’   dynamical regime is the duality of large-scale processing by sets of distributed, 

interconnected areas and local processing within those areas. The simulations presented in this 

chapter add weight to the intuitive idea that such local-global dynamics are promoted by modular 

small-world connectivity. Small-world networks are characterised as having a high clustering 

coefficient but with a short characteristic path length (Watts and Strogatz, 1998). A small-world 

network is also modular if it can be partitioned into sets of nodes (modules) that have dense within-

module connections but are only sparsely connected to other modules. Clustering and modularity 

tend to favour localised processing, while a short characteristic path length enables easy connectivity 

between arbitrary sites. As the results presented confirm, a balance of these two properties promotes 

the sort of local-global dynamics that is the hallmark of metastability. 

6.3 Plasticity Experiment 

6.3.1 Experimental Setup 

This chapter demonstrates not only that modular small-world structure promotes the transient 

formation of synchronous coalitions through metastable dynamics, but also that the modular small-

world topology required to support this dynamics will naturally arise through synaptic plasticity. To 

do this, networks in which populations of spiking neurons are nodes are simulated. The networks are 

divided into populations, and each population is configured to collectively oscillate at a different 

intrinsic frequency. The interaction of these oscillating neural populations leads to complex dynamics. 

Acting in concert with synaptic plasticity, these dynamics naturally result in the restructuring of the 
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network topology to have modular small-world connectivity, which in turn heightens levels of 

metastability in the system. 

6.3.2 Small-world index 

The small-world index (Humphries, Gurney and Prescott, 2006) is used to quantify the degree of 

small-world connectivity within networks of oscillators. Within small-world networks most nodes 

are not neighbours, but most nodes can be reached from every other node by a path which consists of 

small number of hops. Small-world networks have a small characteristic path length, and a clustering 

coefficient that is significantly higher than expected by random chance. 

The path length between any pair of nodes in a graph G is defined as the number of nodes in the 

shortest path connecting the two. The average path length over all pairs of nodes in G is λG. The 

clustering coefficient of a node i ∈ G is defined as the ratio of actual edges between neighbours of i to 

all possible edges between those neighbours. The clustering coefficient γG of the graph G is the mean 

of the clustering coefficient over all i ∈ G. The small-world index of G (σG) is given by: 

  

rand

 rand

λ
λG

γG
=σG γ  

Where γrand and λrand are the clustering coefficient and average path length of a random graph with the 

same connectivity. The index is high if G exhibits comparable mean path length with a higher 

clustering coefficient to a randomly connected graph with the same number of nodes and edges. 

6.3.3 Modularity 

Many networks divide naturally into communities or modules with dense connections within 

communities but sparser connections between them. Modularity (Leicht and Newman, 2008) is used 

to quantify the degree of modular connectivity within networks of oscillators. Large positive values 

of modularity indicate when there are more edges within communities than would be expect by 

chance. For directed networks, the crucial point is that the expected positions of edges in the network 

depend on their direction. Consider two nodes, i and j, and suppose node i has high out-degree but 

low in-degree while node j has the reverse situation. In this example an edge is more likely to run 

from i to j than vice versa. As it is a bigger surprise to find an edge from j to i than from i to j, it 
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should make a bigger contribution to the modularity, since modularity should be high for statistically 

surprising configurations. 

The probability of an edge from node j to node i is (kiinkjout)/m, where kiin is the in degree of node i, 

kjout is the out degree of node j, and m is the total number of edges in the network. For a given 

partitioning of the nodes into communities, the modularity Q is defined as: 
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where Aij is an element of the adjacency matrix, δij is the Kronecker delta (equal to 1 if i and j are the 

same and 0 otherwise), and ci is the label of the community to which node i is assigned. The task of 

finding a partitioning of the nodes that maximises Q is known to be NP-complete, so practical 

methods based on modularity optimisation make use of approximate schemes and heuristics. The 

work presented uses the stochastic algorithm in the brain connectivity toolbox of (Rubinov and 

Sporns, 2010), where slightly differing results may be produced each time modularity is calculated. 

In the present work, the maximum over 100 samples of calculated modularity is used to obtain the 

final modularity measure. 

6.3.4 Knotty centrality 

The network measure   called   ‘knotty   centrality’   quantifies   the   extent   to  which   a   given   subset   of   a  

graph’s  nodes  constitutes  a  densely  intra-connected topologically central connective core (Shanahan 

and Wildie, 2012).  For a directed graph G with N nodes, the knotty centrality (KC) of a (non-empty, 

non-singleton) subset S of the nodes in G is given by: 

  � � � � � �¦
�� Siss

s ibc
NN
E=SKC
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where ES is the number of edges between nodes in S, and NS is the number of nodes in S, and bc(i) is 

the betweenness centrality of node i normalised with respect to the whole graph. The measure can be 

applied to either weighted or unweighted graphs by substituting weighted or unweighted variants of 

betweenness centrality (Brandes, 2001). Knotty centrality ranges from 0 to 1. It is 0 if none of the 

nodes in S is adjacent, and 1 if S is a clique.  
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For non-trivial graphs it is infeasible to calculate the knotty-centrality of all 2N subsets of G and pick 

the one with the maximum value. Instead an exhaustive search of all subsets of G whose members 

fall in the top M nodes for betweenness centrality is performed. Given the subset with the highest 

knotty centrality, gradient ascent is then used to add nodes to it so as to maximise the knotty-centality. 

6.3.5 Metastability 

Shanahan  (2010) introduced a measure of metastability (V ) based upon an estimate of the variance 

in synchrony amongst oscillators over time. 
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where φ (t) is the synchrony of the system at time t, and φ is the mean synchrony of the system over 

the entire time of the simulation. The measures φ (t) and φ  are detailed in section 4.6. tmax is the 

length of time of the simulation. This metastability metric has a shortcoming in that the distribution 

of synchrony may have a fairly high variance, resulting in high metastability, but be skewed towards 

desynchrony and therefore not have any stable episodes. To correct for this, the measure used in this 

chapter (V fix) scales the measure of metastability defined above according to the skewness of the 

distribution if and only if the distribution is skewed towards desynchrony. 

� �s=fix �1VV  

where s is 0 if the distribution of synchrony is not skewed towards dysynchrony, and is a value 

between 0 and 1 with 1 being maximum skewness if the distribution of synchrony is skewed towards 

desynchrony. 

6.3.6 Results 

The approach taken in this chapter is to build simulations of interacting neural oscillator populations 

and study the network structure and dynamics before and after plasticity is applied. As with the 

previous   chapter,   a   number   of   different   measures   are   then   used   to   assess   the   network’s   overall  

dynamics. The frequency modulation between neural oscillators, averaged in the network as a whole, 

is measured using the mean intermittent frequency correlation, as defined in the previous chapter. 

Coalition entropy (Section 5.4.4) measures the variety of metastable states entered by a system of 

oscillators and is calculated from the number of distinct states the system can generate and the 
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probability of each state occurring. By identifying high levels of mean intermittent frequency 

correlation and coalition entropy it is possible to discern whether the neural populations in a network 

are  modulating  each  others’  oscillatory  behaviour  so  as   to  explore  many  different  coalitions.   If   the  

network also displays levels of synchrony that promote information transfer during coalition 

formation, then the network exhibits metastability. This is characterised by the tendency of a system 

to continuously migrate between a variety of synchronous states. This measure of metastability, 

which  is  called  ‘composite  metastability’,  is  contrasted with the measure of metastability defined in 

section 6.3.5 that is based on that introduced by Shanahan  ( 2010). 

A series of experimental simulations were performed in each of which 24 neural QIF PING 

oscillators were chosen, with frequencies drawn from a uniform distribution, from the set that had 

been evolved with intrinsic frequencies ranging from 30Hz to 50Hz. The probability of one oscillator 

providing neural input to another was determined with a given probability C. The probability C was 

the same for all oscillator to oscillator connections in the same experimental simulation. Given that a 

connection was established from oscillator n to oscillator m, the excitatory neurons in oscillator n 

synaptically connect to the excitatory neurons in oscillator m. To maintain consistency with the work 

in the previous chapter, the number of synaptic connections formed was 20 percent of the 40000 

possible synaptic connections from the 200 excitatory neurons in oscillator n to the 200 excitatory 

neurons in oscillator m. For all synaptic connections formed the weight of the synapse was set to W. 

The values for W and C were randomly chosen at the beginning of each experimental simulation 

from a uniform distribution between 0 and 1 for C, and a uniform distribution between 0 and 0.38 for 

W. The present work uses 24 neural oscillators rather than the 10 used in the previous chapter. As a 

result, the maximum synaptic weight value W is 0.38 rather than the higher 1.0 used in the previous 

chapters experiment. However, the shape of the data within these weight and connection probability 

ranges presented in the results that follow is the same for both pieces of work. In the present chapter 

480 simulations were performed. As the weight and connection probability for each of the 480 

simulations were chosen at random, these data points are scattered throughout this parameter space. 

Figures 6.1-6.6 show various measures taken from these 480 simulations. These are analysed and 

discussed in detail below. In figures 6.1-6.4 a surface has been fitted to the underlying trend of the 

480 data points for each measure depicted.  

Throughout each simulation, external stimulus was provided to each neural oscillator by a Poisson 

process  with  parameter  λ  =  4.375.  The  inputs  were  scaled  by  8 in order to provide sufficient stimulus 
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to induce firing. Each experiment was run for 2000 ms of simulated time with no STDP, after which 

the simulation continued running for 10000 ms using STDP, and finally for a further 2000 ms 

without STDP. After each experiment, the firing activity of the excitatory layers in each oscillator 

was used to calculate synchrony, coalition entropy, mean intermittent frequency correlation and 

composite metastability. This was performed on the simulation times before and after STDP was 

applied. The first 500 ms of these simulation times were discarded in the calculation of these metrics 

to eliminate initial transients. 

Figure 6.1A shows the synchrony through the parameter sweep prior to STDP. Unsurprisingly, and in 

accord with previous findings, synchrony increases as connectivity increases. The neural systems 

never reach full synchrony, as on the simulations which attain the highest values of synchrony these 

systems regularly deviated from full synchrony over the course of the simulation. The value of 0.25 

synchrony in the area of low weight and low connection probability represents only coincidental 

alignments in phase.   

Figure 6.1B shows coalition entropy for the simulations prior to STDP. The trend for coalition 

entropy has the reverse form from synchrony, decreasing as synchrony increases, and the oscillators 

become more aligned in phase for more of the time. The measure of coalition entropy used cannot 

distinguish coincidentally synchronous coalitions from those that are genuinely coupled. However, 

when we contrast with the graphs of synchrony we can get an idea of what is happening. Regions of 

the parameter space with low weight and low connection probability exhibit high coalition entropy, 

but the same regions present low values for synchrony. This suggests that the many coalitions that 

appear are constituted by very short coincidental alignments in phase that are not capable of 

significant information transfer (Buehlmann and Deco, 2010). The mid parameter space area shows 

fairly high values for synchrony, indicating the capacity for substantial information transfer, as well 

as high coalition entropy indicating transfer between many different groups at different times. The 

region of the parameter space in which the synaptic weight and the inter-population connection ratio 

are high facilitates more information transfer but less variation in coalitions.  

The mean intermittent frequency correlation prior to STDP is shown in figure 6.1C. As causal 

influence between oscillators increases in the network so does this correlation measure, suggesting 

that correlation directly reflects causation in this case. The previous chapter demonstrates the 

statistical significance of this metric, and shows comparable results for synchrony, coalition entropy 

and mean intermittent frequency correlation when using Izhikevich neurons and Hodgkin-Huxley  
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Figure 6.1 Dynamical metrics prior to learning. Each simulation uses 24 neural PING oscillator 

nodes with the connection probability and weight being the same in all nodes on a single simulation 

run. Each separate simulation uses a different connection probability and weight drawn from a 

uniform distribution.  (A) The overall synchrony in the networks prior to learning. (B) The coalition 

entropy in the networks prior to learning. (C) The mean intermittent frequency correlation for 

networks prior to learning. (D) The composite metastability for the networks prior to learning 

calculated from the composite of synchrony, coalition entropy and mean intermittent frequency 

correlation shown in panels A, B and C respectively. 
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neurons. The previous chapter further demonstrates that fluctuating frequencies in different neural 

populations influence each other across frequency bands. The present chapter goes on to show the 

effect on these dynamics as well as on structure when STDP is applied to these networks. 

By normalising and combining intermittent frequency correlation, coalition entropy and synchrony 

we obtain a composite measure of metastability (figure 6.1D). There is a diagonal vector from weight 

value 0.2 and connection probability 1 to weight value 0.38 and connection probability 0.5 at which 

the composite metastability is at a peak. This area, in which the three metrics are balanced, facilitates 

metastable dynamics in which there is a richness of influence and interaction between different 

oscillators  and  across  frequency  bands  modulating  each  other’s  behaviour,  enabling  the  exploration  

of a large repertoire of different coalitions. The medium-to-high level of synchrony in this area 

further suggests that the conditions for information transfer between populations are fulfilled 

(Buehlmann and Deco, 2010). These traits are desirable in order to facilitate exploration, integration, 

and communication among functionally related areas during cognitive processing (Chialvo, 2010; 

Kelso, 2012; Shanahan, 2012). 

Figure 6.2 show the same measures as figure 6.1 but for the period after STDP was applied. It is 

interesting to note that there is some slight variation given the inter-node connection weight prior to 

learning. However, the inter-node connection weight prior to learning has no major affect on the 

measures post-learning that have resulted from the modification of the network structure. It is also 

noteworthy that the connection probability prior to learning is the key variable affecting the changes 

that take place when plasticity is applied. 

Figure 6.3 shows a comparison of metastability metrics taken from the simulations pre and post 

learning. Figures 6.3A and 6.3B show the metastability metric detailed in section 6.3.5 based on that 

introduced by Shanahan (2010). Comparing the pre-learning metric of Shanahan in figure 6.3A to 

that of composite metastability in figure 6.3E, the shape of the surfaces look similar. However, it can 

be seen that the area of high connection probability and high weight produces high metastability in 

figure 6.3A but low metastability in figure 6.3E. By taking the metastable metrics of figures 6.3A 

and 6.3B and normalising them, and then combining them with coalition entropy which is also 

normalised,   the   plots   of   figures   6.3C   and   6.3D   are   obtained.   These   plots   are   termed   ‘metastable  

complexity’  as  they  combine  the  variance  in  synchrony  with  a  measure  of  the  variation  in  different  

coalitions that appear. As can be seen in figure 6.3C the area of high connection probability and high 

weight produces low metastability much like that for composite metastability in figure 6.3E. It can be 
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concluded from this that the high metastability in the area of high connection probability and high 

weight in figure 6.3A is obtained because there is variation in synchrony but that there is less 

variation in coalitions and the later is not accounted for. Hence, the same coalitions are reappearing 

at different times in the simulations in this area of the plot. In accounting for coalition entropy, 

figures 6.3C and 6.3D appear very similar to figures 6.3E and 6.3F respectively. 

 

Figure 6.2 Dynamical metrics post-learning. The experimental setup is the same as for figure 6.1 

and subsequent figures. (A) The overall synchrony in the networks post-learning. (B) The coalition 

entropy in the networks post-learning. (C) The mean intermittent frequency correlation for networks 

post-learning. (D) The compostite metastability for the networks post-learning calculated from the 

product of synchrony, coalition entropy and mean intermittent frequency correlation shown in panels 

A, B and C respectively.  
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Figure 6.3 Comparison of metastability metrics. The experimental setup is the same as for figure 

6.1 and subsequent figures. (A & B) Shanahan metastability metric pre and post-learning. (C & D) 

Shanahan metastability metric combined with coalition entropy to give metastable complexity pre 

and post-learning. (E & F) The compostite metastability for the networks pre and post-learning 

calculated from the composite of synchrony, coalition entropy and mean intermittent frequency 

correlation.  
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It is interesting to note from figures 6.3B, 6.3D and 6.3F that when connection probability is high 

prior to learning the metastability post-learning is low. This behaviour can be elucidated further by 

examining what is happening with the coalitions that form throughout the post-learning time. Figure 

6.4A shows the number of unique coalitions that appear post-learning regardless of the number of 

times they reappear. As can be seen in the area for high connection probability between 50 and 500 

unique coalitions appear in this area. However, if we ignore coalitions that are around for 10 ms or 

less, so as to ignore coincidental alignments in phase and only consider those that are around for a 

longer time so that they promote information transfer, then the story is a little different. Figure 6.4B 

shows the number of unique coalitions that appear for more than 10 ms post-learning regardless of 

the number of times they reappear. The same high connection probability area exhibits between two 

and eight long lasting coalitions. Comparing the mean size of these coalitions in figure 6.4C we can 

see that the same area shows coalitions sizes of between three and twelve oscillator nodes, as would 

be  expected.  The  area  of  low  weight  and  high  connection  probability  shows  coalition  sizes  of  ≈12.  

Figure 6.4D shows the mean duration that the coalitions are present for. The area of low weight and 

high  connection  probability  show  durations  of  ≈1450  ms  indicating  that  the  (typically)  two  coalitions  

of approximately twelve nodes are present for virtually all of the 1500 ms of post-learning simulation 

time. As would be expected, the same area in figure 6.3F exhibits very low metastability.  

The behaviour of the coalitions in this area is indicative of multistability. Maistrenko et al (2007) 

explored analytically the behaviour of systems of Kuramoto oscillators that were uniformally 

connected and had an STDP-type rule applied to them. They found that the systems would tend 

towards multistability. The area of high connection probability in the simulations presented in this 

chapter is uniformally connected. It seems that when there is also a low weight then the systems tend 

towards multistability. However, it is unclear whether the areas of high connection probability and 

high weight would also tend towards multistability if given enough learning time. This is certainly an 

area for future exploration. Intuitively, it seems possible that a pre-existing high weight configuration 

would take longer to settle into a multistable regime that a low weight configuration. If this area of 

connectivity were proven also to be multistable then one would be inclined to conclude that 

uniformly connected neural oscillators display the same behaviour as the multistable Kuramoto 

oscillators described by Maistrenko et al. The areas of lower connection probability are more 

sparsely connected and are metastable rather than multistable. It may further be concluded that the 

inability to balance all possible connection pathways between nodes due to the sparse and non-
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uniform connectivity keeps a tension in the system that prevents multistability and instead promotes 

metastability. 

 

Figure 6.4 Coalition presence. The experimental setup is the same as for figure 6.1 and subsequent 

figures. (A) Number of unique coalitions that appear in the simulations post-learning regardless of 

how many times they reappear. (B) Number of unique coalitions that appear for more that 10 ms in 

the simulations post-learning regardless of how many times they reappear. (C) Mean coalition size of 

the unique coalitions that appear for more that 10 ms post-learning. (D) Mean duration that a 

coalition subsists for post-learning (only for coalitions that appear for more that 10 ms). Note that A 

and B are rotated differently of C and D. 
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Figure 6.5A shows the connection probability prior to learning and the metastability after plasticity is 

applied and the network structure has changed. There is a rise in metastability as pre-learning 

connection probability rises, it peaks at around pre-learning connection probability 0.3, and then falls 

off. The metastable curve of interest lies between pre-learning connection probability 0.1 and 0.5. 

The elevated metastable area is not only in a different place to that of figure 6.1D, but also peaks at a 

value around 30% higher than its maximum in the pre-learning part of the simulation. This begs the 

question, what has changed in the structure of the networks that started in this connection probability 

area so as to alter their metastability? Figure 6.5B show the distribution of weights post-learning. The 

weights form a bimodal distribution in which they tend to polarise towards 0.1 and 1. This polarising 

behaviour is expected with an additive nearest neighbour STDP rule. The area below connection 

probability  ≈0.1  does  not  adapt  so  much  due  to  over  sparseness  in  the  network  structure. Given that 

the  area  greater  than  connection  probability  ≈0.1  shows  similar  weight  distribution,  the  question  as  to  

what alters metastability is naturally drawn away from the weights and to topological structure. 

Figure 6.5C shows the small-world index of the networks post-learning plotted against pre-learning 

connection probability. To understand the significance of the plots requires a short discussion of the 

the definition of small-world index. The small-world index is calculated relative to random networks 

with the same degree distribution. Hence small-worldness is evident at index values greater than 1. A 

value of 1 would represent a random network. The values shown in figure 6.5C are above 1 but 

generally below 1.5. This may appear low for a small-world index. However, the value of the small-

world index is not normalised for different network sizes, and as a result the small-world index can 

be larger for networks with more nodes compared to those with fewer nodes. This is due to the metric 

balancing particular ratios that are ultimately dependent on mean degree and the number of nodes in 

the network. (The definition of the small-world index is given in section 6.3.2.) To achieve small-

worldness the characteristic path length of the network should be approximately the same as the 

characteristic path length of a random network with the same degree distribution. As a result the 

denominator of the small-world equation should be approximately 1. The numerator divides the 

clustering coefficient of the network by that of a random network with the same connectivity 

distribution. As the mean degree of the network increases towards the number of nodes in the 

network, the clustering coefficent of the network and its random analogue tend towards each other, 

hence reducing small-worldness. This implies that mean degree should be kept fairly low in order to 

achieve small-worldness. With a lower mean degree, the clustering coefficient of a small-world 

network will be higher than that of a random network with the same connectivity distribution, 
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resulting in a small-world index greater than 1. However, clustering coefficient is calculated from the 

number of triangles and possible triangles around a node given the degree of the node. The smaller 

the mean degree is relative to the number of nodes in the network then the fewer possible triangles 

there will be, particularly in the case of a random network. Such a random network will have a 

smaller the clustering coefficient and subsequently a greater small-world index can be achieved. It is 

important to bear in mind that the number of possible triangular pathways grows exponentially given 

the number of nodes in the network. Therefore the likelihood of a limited number of connections 

forming a triangle is equivalently reduced. As such the number of actual triangles around a node will 

be reduced as the number of nodes is increased unless the mean degree is increased exponentially. 

Increasing the mean degree to compensate, as mentioned above, counteracts small-worldness because 

the clustering coefficient of the network and its random version tend towards each other. 

What results from this balancing of variables in a system in which there is exponential growth in 

possible triangles relative to the number of nodes, is a metric for which networks with more nodes 

can generate higher values of small-world index. Using the Watts-Strogatz (1998) technique for 

creating directed small-world networks and varying the connection and rewiring probabilities for a 

network with 24 nodes produces small-world   indices   up   to   ≈1.5.   For   48   nodes   it   produces   small-

world  indices  up  to  ≈2.5,  and  for  98  nodes  it  produces  indices  up  to  ≈4.5.  Given  that  the  networks in 

this chapter have 24 nodes and the idealistic Watts-Strogatz technique for generating small-world 

networks of the same size does not produce a small-world  index  greater  than  ≈1.5,  the  values  shown  

in figure 6.5C which range from 1 to 1.5 are significantly small-world, particularly considering that 

STDP can only alter the restricted number of pathways between oscillator nodes that were selected 

using a random connection probability at the beginning of each simulation. 

Whilst small-worldness is generally  high  for  connection  probabilities  greater  than  ≈0.2,  figure  6.5D  

shows that high connection probability displays lower modularity. The area of interest in which the 

pre-learning connection probability is greater than 0.1 and less than 0.5, and where metastablity is 

elevated post-learning, falls in an area of high modularity. Hence, these networks are both modular 

and small-world. 
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Figure 6.5A shows a lot of variation in metastability between pre-learning connection probability 0.3 

and 0.4. This variability is not explained simply by the modular small-worldness. Figure 6.6A shows 

 

Figure 6.5 Metastability and modular small-world structure post-learning. The experimental 

setup is the same as for figure 6.1 and subsequent figures. (A) The metastability for the networks 

after learning calculated from the composite of synchrony, coalition entropy and mean intermittent 

frequency correlation, and plotted against the connection probability prior to learning.  (B) The 

distribution of weights post-learning plotted against connection probability prior to learning. (C) 

Small-world index after learning plotted against the connection probability prior to learning. (D) 

Modularity after learning plotted against the connection probability prior to learning. Note that 

weight prior to learning plays no significant role in the resultant structure and metastability post-

learning. 
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the knotty centredness of the networks post-learning and their respective metastability. The red 

crosses indicate where the connection probability prior to learning is greater than or equal to 0.3 (i.e 

where metastability peaks and falls post-learning). Although there is a slight separation of the data 

over the area of decline in metastability, in general the same variability can be seen in metastability 

around the peak and fall area as in figure 6.5A. Using the modules of oscillator nodes calculated for 

the modularity metric, figure 6.6B shows the mean weight of oscillator-to-oscillator connections in 

different   modules   and   plots   these   against   each   network’s   knotty   centrality.   The   figure   shows   the  

metastability for knotty centrality values around 0.25 increasing as the mean inter-module weight 

increases (blue dots). From the point where mean inter-module weight reaches around 0.2, as the 

knotty centredness and mean inter-module weight both increase together, the metastability drops 

rapidly (magenta crosses). This means that from this critical point, the stronger the connections are 

both within the knotty centre and between modules then the less metastable the network will be. 

However, if the knotty centredness remains around 0.25 and only the mean inter-module weight 

increases then higher levels of metastability can be reached. By thresholding inter-module connection 

weights above 0.1 we can identify strong inter-module connections. The blue dots show the 

percentage of strong connections between 0-39%, the red crosses between 40-70%, and the black 

crosses between 71-100%. It is clear that there is an increase in metastability as the percentage of 

strong connections increases, but in the mid area (40-70%) metastability can fall. However, it is 

interesting to note that the highest percentage of strong inter-module connections exhibits greater 

metastability albeit that the knotty centrality for these remains around 0.25. The conclusion is that 

this area of knotty centredness is important in achieving metastability. A knotty centrality value 

between 0.2 and 0.4 produces elevated metastability, and the rise and fall of metastability within this 

area can be explained by the strength of the mean inter-module connection weights. 

Figure 6.6C shows metastability in relation to modularity and knotty centredness. The red crosses in 

this figure identify the pre-learning connection probabilities greater than or equal to 0.3, thus 

separating the data into the metastable climb and fall. Figure 6.6D shows the same data from above 

with the area of metastable elevation highlighted with green crosses. This area of interest appears at a 

juncture between modularity and knotty centrality. It was formed through plasticity acting on 

networks that had a pre-learning connection probability between 0.1 and 0.5. The resultant networks 

are modular small-world networks that have a particular level of knotty centrality and whose level of 

metastability is also reliant on the mean inter-module connection weight. 
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Figure 6.6 Metastability, modularity, and knotty centredness post-learning. The setup is the 

same as for figure 6.1 and subsequent figures. (A) Knotty centredness post-learning. The red crosses 

mark the area at which connection probability C prior to learning >= 0.3. There is high variance in 

metastability in the area of knotty centredness for C between 0.3 and 0.4. (B) Module connectivity 

post-learning. The area of high variance in panel A is explained by the average inter-module 

connection weight in the different networks. The legend identifies different levels of strong 

connectivity as having different metastable characteristics. (C) Learnt structure. The area of elevated 

metastability appears around a junction between modularity and knotty centredness, as well as the 

pre-learning connection probability of C = 0.3  (D) Metastable structures post-learning. Panel C 

shown from above with the area of elevated metastability highlighted by green crosses.  
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6.4 Discussion 
The ability to orchestrate both local and global activity is of crucial importance for the brain, since it 

consists of numerous specialised regions interacting on multiple levels. The work presented in this 

chapter supports the intuitive notion that network topology needs to support such complex interaction, 

and that the required dynamics are promoted by modular small-world connectivity. Modular small-

world structures are prevalent in the brain. Sporns et al (2000) investigated the structure of large-

scale cortical systems and found evidence of localised clustering as well as a low characteristic path 

length between sites, the attributes of modular small-world connectivity, and these findings have 

since been substantiated and extended (Bullmore and Sporns, 2009). In addition, Sporns (2013) 

reports on a growing body of work that draws attention to how the balance between structural 

segregation and integration is essential for the operation of the brain networks underlying cognitive 

function. 

Computer simulations have also contributed weight to the argument that modular small-world 

connectivity promotes functional complexity. Sporns et al (2000) compared networks optimised in 

simulation for functional complexity and cortical connection matrices derived from real datasets, and 

found a significant overlap in their structural and functional characteristics. Functional complexity 

captures the extent to which a system is both functionally segregated such that small subsets of the 

system behave independently, and functionally integrated such that large subsets tend to behave 

coherently. The heightened metastability in modular small-world networks demonstrated in this 

chapter supports the view that this type of connectivity promotes functional complexity, as well as 

placing emphasis on the necessity for high levels of modularity. 

The question naturally arises as to how the right topology of neural connections is formed. Brain 

networks are shaped by evolution, ontogenetic development, and experience (Sporns et al., 2004). 

Levy et al (2001) report that synaptic plasticity facilitates the formation of sub-assemblies within a 

network, each of which exhibits its own oscillatory dynamics, a phenomenon they refer to as 

distributed synchrony. Using computer simulations, Kwok et al (2007) explored the development of 

small-world network structures on a micro scale. They used a Hebbian rewiring rule similar to STDP 

that connects pairs of neurons that fire together and disconnects those that do not. Given spontaneous 

neural firing activity characteristic of early development, the resulting network exhibited modular 

small-world connectivity. All of these findings demonstrate the natural tendency of neural networks 
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to self-organise into modular and small-world structures at the micro scale, and are consistent with 

the present work. However, the concern of this chapter is the macro scale. 

Modular brain structures are hierarchical but not fractal between scales. To the extent that the brain 

exhibits any fractal self similarity, this is statistical rather than exact (Meunier, Lambiotte and 

Bullmore, 2010). Therefore the causes of modular small-world networks at the micro scale do not 

necessarily apply to the macro scale. An explanation of the emergence of larger scale modular small-

world topology is required. The present work demonstrates how small-world topology at a macro 

scale emergences due to the interaction between adaptive processes and naturally occurring dynamics. 

It is interesting to note that the network dynamics and adaptive processes drive the network towards 

forming modular small-world architectures that support heightened levels of metastability. Networks 

whose starting configuration did not result in metastability exhibited very low levels of mean 

intermittent frequency correlation, implying little or no influential interaction and cooperation 

between oscillator nodes. It may be suggested that as a consequence they are not capable of 

functionally complex behaviour.   

A key finding of the results is that a particular type of connective core within the network structure is 

required in order for metastability to be manifest. This implies that the connective core plays an 

important part in balancing metastability. It has been argued that the spatial and topological centrality 

of brain regions that form the core of the human connectome plays a role in maintaining efficient 

global communication. (van den Heuvel and Sporns, 2011; Shanahan, 2012). When calculated, the 

knotty centrality for an 82 region human brain connectome (van den Heuvel and Sporns, 2011) and a 

52 region pigeon brain connectome (Shanahan et al., 2013) both had a knotty centredness that falls 

inside the range, detailed in the results, within which metastability is elevated. Interestingly, they fall 

to the right (≈0.37) of the metastable peak, in the area of high metastable variance. Intuitively this 

seems appropriate. Higher metastability ought to correlate with more lateral, novel and creative 

thought processes. As far as everyday cognition is concerned, not being overly metastable would 

result in more balanced reasoning whilst still allowing originality of thought. However, the ability to 

vary  one’s  creativity  is  also  clearly  advantageous. 

To summarise, the results presented imply that the phenomenon of transient episodes of synchrony in 

neural systems is inherently related to the topological structure of the network. This is because the 

natural formation of a modular small-world topology gives rise to metastable dynamics, which in 

turn facilitate the empirically observed coordination phenomenon. 
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7 Conclusion 

 
This thesis presents a model-based exploration of metastability as the cause of the phenomenon of 

transient coalition formation between neural areas empirically observed in vivo. The main focus has 

been on understanding the interaction between oscillations in different neural populations and the 

resulting global system dynamics, as well as the relationship between network structure and 

dynamics within the brain. Gaining an understanding of the way in which brain-scale dynamics arise 

has required several studies. Firstly, assessing the validity of existing neural models of metastability 

that use abstract oscillator models by comparing the collective behaviour of oscillating populations of 

neurons to the collective behaviour of Kuramoto oscillators. Next, quantifying the modulatory 

influences between oscillatory neural populations and relating them to other measures that quantify 

metastability. Finally, applying plasticity to a network of neural oscillators and evaluating the 

resulting network structures and the effect it has upon metastability. 

Metastability is characterised as intrinsically driven movements between transient, attractor-like 

states. Although transient episodes of synchrony between different neural areas are observed in the 

brain, it has been a point of contention as to whether an underlying metastable mechanism gives rise 

to the observed phenomena or whether it is just an epiphenomenon. The results presented here 

demonstrate that metastability naturally emerges in networks of oscillating spiking neuron 

populations in simulation.  

Other work has aimed bridge the gap between simulation and empirical data. For example, Cabral et 

al (2011) performed simulations in which simple Kuramoto oscillators modelled the intrinsic 
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oscillatory dynamics of functional neural areas set within a human connectome. They reported the 

presence of metastability, and demonstrated that the resulting phenomena of transient synchronous 

coalitions reproduced the fluctuations in human resting state networks obtained in vivo (Hellyer et al., 

2014). Chapter 4 explored the relationship between this type of simple oscillator model and their 

neural population cousins by emulating neurally the Kuramoto critical coupling experiment that 

showed an increase in synchrony as connection strength is increased in a uniformly connected 

oscillator network. It was shown that the neural systems broadly conform the behaviour of Kuramoto 

oscillators, and so substantiates the above metastability work. However, it was also demonstrated that 

at the point of maximum synchrony the neural systems not only displayed several coexisting 

frequencies within an individual oscillator population but also showed deviations from a measure of 

full synchrony likely caused by these additional fluctuating influences. 

Having shown that neural models display greater spectral complexity during synchronisation than 

more abstract oscillator models, with several oscillatory frequencies coexisting within an individual 

neural oscillator population, chapter 5 explored the interaction of these frequencies between neural 

oscillator populations and across frequency bands. It was shown that the fluctuation of frequencies in 

each oscillator modulated the frequencies of the other oscillators, and in doing so was able to drive 

the system as a whole towards transient episodes of synchrony. An area in the connectivity space was 

located in which metastability was at a peak. Interestingly, there was an almost equal influence upon 

metastability from synaptic weight and macro scale connectivity. This suggests that it is simply a 

particular level of mutual influence between oscillators as a whole that is required in order to 

generate metastable dynamics. Given that additive STDP polarises the synaptic weights, the 

implication is that future work on metastability can focus on topology rather than weights in order to 

investigate the phenomenon. 

Chapter 6 explored the effect of plasticity in a network of neural oscillators. It was demonstrated that, 

given an appropriate initial connection probability between neural oscillators, the network would 

restructure into a modular small-world network that exhibits heightened levels of metastability. 

Plasticity, responding to the interactions between different neural areas, naturally forms modular 

small-world networks, which in turn promote metastability, and metastability further enhances these 

structural features. Another key finding was that a particular type of connective core within the 

network structure is required in order for metastability to be manifest. This implies that the 

connective core plays an important part in balancing metastability. This fits well with the argument 
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that the spatial and topological centrality of brain regions that form the core of the human 

connectome plays a role in maintaining efficient global communication (van den Heuvel and Sporns, 

2011; Shanahan, 2012).  

The present work motivates more research into metastable phenomena. An area for further research 

would be to explore the space of small-world, modular, and connective core configurations and 

identify the metastable characteristics within it. Considering where the human connectome falls 

within this space would provide further insights into the constraints on brain dynamics. In addition, 

the present study has presumed that each neural population is active, and has therefore not included 

the amplitude of the oscillation as a variable in the study. Whilst this fits well with the studies that 

use Kuramoto oscillators, which do not model amplitude either, a more detailed study that uses 

amplitude may be called for. Further to this, it would be invaluable to explore whether and how 

metastable dynamics can be used to promote cognitive functions, such as behavioural responses if 

embodied in a robot, or even the potential of using these exploratory dynamics for problem solving.  

Before this can be done a greater understanding of how and why coalitions are formed relative to 

network structure and state is required. One possible way of exploring this would be to locate 

different coalitions that form in a network and use Ganger causality to identify the network 

characteristics that give rise to them. If this is performed over many different network configurations 

then it may be possible to use data mining on the results from the Granger causality analysis to 

identify key conditions and principles that give rise to specific types of coalition formation. Such a 

study may lead to the ability to design network topologies that facilitate the formation of coalitions 

between functional groups of neurons that are advantageous for cognitive processing. 

A further issue raised in the study was how the small-world index is not normalised over different 

network sizes. This means that a direct comparison between networks is presently not possible. It 

would be a very worthy task to adjust the small-world index so as to normalise over network sizes as 

this would assist researchers a great deal. 

Given that metastability emerges naturally in neural simulations and that such dynamics map well to 

empirical data, the suggestion made here is that metastability is also present in biological brains. If 

this is not the case then researchers are faced with an important question as to why this complex 

interaction between oscillators, which is ubiquitous in dynamical systems in nature and seemingly 

also present in simulations of neural oscillators, is not present in the brain. The simulations presented 
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in this work suggest that modular small-world network characteristics akin to those found in the brain, 

and the metastable dynamics they promote, facilitate versatile exploration, integration, and 

communication between functionally related neural areas, and thereby support sophisticated 

cognitive processing in the brain. If metastability is present in the brain then, at the very least, further 

investigation will be required to better understand how these metastable dynamics operate in such a 

way that human cognition is not disrupted, but instead is stable and effective. However, I hypothesise 

that such dynamics form a good basis for contextual exploration, integration and communication 

between functionally related areas during cognitive processing. In an embodied system in which 

different brain areas are processing information relevant to the ongoing environmental situation this 

potentially provides a mechanism for problem solving. Presently we do not understand enough about 

the phenomena in order to make predictions that can be tested in vivo so as to confirm the hypothesis 

of metastabilty in the brain, let alone understand its cognitive purpose. Nevertheless, the present 

work demonstrates the presence of metastability in neural simulations, providing a strong indication 

that such phenomena should be present in the brain, and in doing so warrants much further 

investigation and research. 

 

  



    113 

 

113 

 

8 Bibliography 

Abbott, L.F. and Nelson, S.B. (2000) 'Synaptic plasticity: taming the beast', Nature neuroscience, vol. 

3, november, pp. 1178–83. 

Abrams, D. and Strogatz, S. (2004) 'Chimera states for coupled oscillators', Physical Review Letters, 

vol. 93, no. 17, p. 174102. 

Acebrón, J., Bonilla, L., Pérez-Vicente, C., Ritort, F. and Spigler, R. (2005) 'The Kuramoto model: A 

simple paradigm for synchronization phenomena', Reviews of Modern Physics, vol. 77, no. 1, pp. 

137-185. 

Alger, B.R.N.R.A. (1979) 'GABA-mediated biphasic inhibitory responses in hippocampus', Nature, 

vol. 281, pp. 315 - 317. 

Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I.A. and Laursen, A.M. (1980) 'Two different 

responses of hippocampal pyramidal cells to application of gamma-amino butyric acid', Journal of 

Phisiology , vol. 305, August, pp. 279-96. 

Axmacher, N., Mormann, F., Fernández, G., Elger, C.E. and Fell, J. (2006) 'Memory formation by 

neuronal synchronization', Brain research reviews, vol. 52, no. 1, pp. 170-82. 

Barlow, J.S. (1993) The Electroencephalogram: Its Patterns and Origins, MIT Press. 

Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J.R.P. and Jonas, P. (2002) 'Fast 

synaptic inhibition promotes syn- chronized gamma oscillations in hippocampal interneuron 

networks', Proceeding National Acadamy of Science USA , vol. 99, pp. 13222–13227. 

Basar, E., Basar-Eroglu, C., Karakas, S. and Schurmann, M. (2000) 'Brain oscillations in perception 

and memory', International Journal of Psychophysiology, vol. 35, no. 23, pp. 95–124. 

Bear, F., Connors, W. and Paradiso, M. (1996) Neuroscience: Exploring the Brain, Williams and 

Wilkins. 



114 Bibliography 

 

114 

 

Belluscio, M.A., Mizuseki, K., Schmidt, R., Kempter, R. and Buzsáki, G. (2012) 'Cross-Frequency 

Phase-Phase coupling between theta and gamma oscillations in the hippocampus', The Journal of 

Neuroscience, 32(2):423–435., vol. 32, no. 2, pp. 423–435. 

Betzel, R.F., Erickson, M., Abell,   M.,   O’Donnell,   B.F.,   Hetrick,   W.P.   and   Sporns,   O.   (2012)  

'Synchronization dynamics and evidence for a repertoire of network states in resting EEG', Frontiers 

in Computational Neuroscience, vol. 6, September, pp. 1-13. 

Börgers, C. and Kopell, N. (2005) 'Effects of noisy drive on rhythms in networks of excitatory and 

inhibitory neurons', Neural Computation, vol. 17, no. 3, pp. 557–608. 

Brandes, U. (2001) 'A faster algorithm for betweenness centrality', Journal of Mathematical 

Sociology, vol. 25, no. 2, pp. 163–177. 

Breakspear, M., Heitmann, S. and Daffertshofer, A. (2010) 'Generative models of cortical 

oscillations: Neurobiological implications of the kuramoto model', Frontiers in Human Neuroscience, 

vol. 4, p. 190. 

Bressler, S.L. (1995) 'Large-scale cortical networks and cognition', Brain Research Reviews, vol. 20, 

no. 3, pp. 288–304. 

Brunel, N. (2000) 'Dynamics of sparsely connected networks of excitatory and inhibitory spiking 

neurons', Journal of Computational Neuroscience, vol. 8, no. 3, pp. 183–208. 

Brunel, N. and Wang, X. (2003) 'What determines the frequency of fast network oscillations with 

irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance', Journal of 

Neurophysiology, vol. 90, no. 1, pp. 415–430. 

Buckner, R.L., Andrews-Hanna,   J.R.   and   Schacter,   D.L.   (2008)   'The   brain’s   default   network:  

anatomy, function, and relevance to disease', Annals of the New York Academy of Sciences, vol. 1124, 

pp. 1–38. 

Buehlmann, A. and Deco, G. (2010) 'Optimal Information Transfer in the Cortex through 

Synchronization', PLoS Computational Biology, vol. 6, no. 9. 

Bullmore, E. and Sporns, O. (2009) 'Complex brain networks: graph theoretical analysis of structural 

and functional systems', Nature reviews. Neuroscience, vol. 10, no. 3, pp. 186-98. 



    115 

 

115 

 

Buzsáki, G. and Draguhn, A. (2004) 'Neuronal oscillations in cortical networks', Science, vol. 304, no. 

5679, pp. 1926–1929. 

Buzsáki, G., Buhl, D., Harris, K., Csicsvari, J., Czeh, B. and Morozov, A. (2003) 'Hippocampal 

network patterns of activity in the mouse', Neuroscience, vol. 116, no. 1, pp. 201–211. 

Cabral, J., Hugues, E., Sporns, O. and Deco, G. (2011) 'Role of local network oscillations in resting-

state functional connectivity', NeuroImage, vol. 57, pp. 130–139. 

Cabral,  J.,  Luckhoo,  H.,  Woolrich,  M.,  Joensson,  M.,  Mohseni,  H.,  Baker,  A.  and  …  Deco,  G.  (2013)  

'Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network 

interactions lead to structured amplitude envelopes of band-pass filtered oscillations', NeuroImage, 

vol. 90C, pp. 423–435. 

Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., 

Barbaro, N.M. and Knight, R.T. (2006) 'High gamma power is phase-locked to theta oscillations in 

human neocortex', Science, vol. 313, no. 5793, pp. 1626–1628. 

Cheng, H., Wang, Y., Sheng, J., Kronenberger, W.G., Mathews, V.P., Hummer, T.A. and Saykin, 

A.J. (2012) 'Characteristics and variability of structural networks derived from diffusion tensor 

imaging', NeuroImage, vol. 61, no. 4, pp. 1153–1164. 

Chialvo, D.R. (2010) 'Emergent complex neural dynamics', Nature Physics, vol. 6, no. 10, pp. 744-

750. 

Colgin, L.L..D.T..F.M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M. and Moser, E.I. (2009) 

'Frequency of gamma oscillations routes flow of information in the hippocampus', Nature, vol. 462, 

no. 7271, pp. 353–357. 

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. and Buzsáki, G. (1999) 'Oscillatory coupling of 

hippocampal pyramidal cells and interneurons in the behaving rat', The Journal of Neuroscience, vol. 

19, no. 1, pp. 274–287. 

Daubechies, I. and Maes, S. (1996) 'A nonlinear squeezing of the continuous wavelet transform 

based on auditory nerve models', Wavelets in Medicine and Biology, CRC Press, pp. 527-544. 



116 Bibliography 

 

116 

 

Doesburg, S.M., Roggeveen, A.B., Kitajo, K. and Ward, L.M. (2008) ' Large-Scale Gamma- Band 

phase synchronization and selective attention', Cerebral Cortex, vol. 18, no. 2, pp. 386–396. 

Engel, A.K. and Fries, P. (2010) 'Beta-band oscillations signalling the status quo?', Current Opinion 

in Neurobiology, vol. 20, no. 2, pp. 156–165. 

Engel, A.K. and Singer, W. (2001) 'Temporal binding and the neural correlates of sensory awareness', 

Trends in Cognitive. Science, vol. 5, pp. 16–25. 

Ermentrout, B. (1996) 'Type I membranes, phase resetting curves, and synchrony', Neural 

Computation, vol. 8, no. 5, pp. 979–1001. 

Ermentrout, G.B. and Kopell, M. (1986) 'Parabolic bursting in an excitable system coupled with a 

slow oscillation', SIAM Journal on Applied Mathematics, vol. 46, no. 2, p. 233. 

Fell, J., Fernández, G., Klaver, P., Elger, C.E. and Fries, P. (2003) 'Is synchronized neuronal gamma 

activity relevant for selective attention', Brain Research Reviews , vol. 42, pp. 265–272. 

Fidjeland, A.K. and Shanahan, M. (2010) 'Accelerated Simulation of Spiking Neural Networks Using 

GPUs', Proceedings IJCNN 2010, pp. 1-8. 

Fox, P.T. and Friston, K.J. (2012) 'Distributed processing; distributed functions?', Neuroimage, vol. 

61, pp. 407-426. 

Freeman, L. (1977) 'A set of measures of centrality based on betweenness', Sociometry, vol. 40, no. 1, 

pp. 35– 41. 

Freeman, L. (1979) 'Centrality in social networks conceptual clarification', Social Networks, vol. 1, 

no. 3, pp. 215–239. 

Fries, P. (2005) 'A mechanism for cognitive dynamics: neuronal communication through neuronal 

coherence', Trends in cognitive sciences, vol. 9, no. 10, pp. 474-80. 

Fries, P. (2009) 'Neuronal gamma-band synchronization as a fundamental process in cortical 

computation', Annual review of neuroscience, vol. 32, pp. 209-24. 

Fries, P., Reynolds, J.H., Rorie, A.E. and Desimone, R. (2001) 'Modulation of oscillatory neuronal 

synchronization by selective visual attention', Science , vol. 291, no. 5508, pp. 1560–1563. 



    117 

 

117 

 

Fries, P., Schroder, J., Roelfsema, P.R., Singer, W. and Engel, A.K. (2002) 'Oscillatory neuronal 

synchronization in primary visual cortex as a correlate of stimulus selection', Journal of 

Neuroscience, vol. 22, no. 9, pp. 3739–3754. 

Geisler, C. (2005) 'Contributions of intrinsic membrane dynamics to fast network oscillations with 

irregular neuronal discharges', Journal of Neurophysiology, vol. 94, no. 6, pp. 4344–4361. 

Gerstner, W. and Kistler, W. (2002) Spiking neuron models, Cambridge University Press. 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J. and Sporns, O. 

(2008) 'Mapping the structural core of human cerebral cortex', PLoS Biology, vol. 6, no. 7, p. e159. 

Hansen, P., Kringelbach, M. and Salmelin, R. (2010) MEG: An Introduction to Methods, Oxford 

University Press. 

Hasenstaub, A., Shu, Y. and Haider, B. (2005) 'Inhibitory postsynaptic potentials carry synchronized 

frequency information in active cortical networks', Neuron, vol. 47, no. 3, pp. 423-35. 

Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J.S., Sharp, D.J. and Leech, R. (2014) 'The control of 

global brain dynamics: opposing actions of frontoparietal control and default mode networks on 

attention', The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 34, 

no. 2, pp. 451–61. 

He, Y., Wang, J., Wang, L., Chen, Z.J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y. 

and Evans, A.C. (2009) 'Uncovering intrinsic modular organization of spontaneous brain activity in 

humans', PLoS ONE, vol. 4, no. 4, p. e5226. 

Hodgkin, A.L. (1948) 'The local electric changes associated with receptive action in a non-mediated 

axon', Journal of Phisiology, vol. 107, pp. 165-181. 

Hodgkin, A.L. and Huxley, A.F. (1952) 'A quantitative description of ion currents and its 

applications to conduction and excitation in nerve membranes', Journal of Phisiology, vol. 117, pp. 

500-544. 

Holland, J. (1975) Adaptation in Natural and Artificial Systems, The University of Michigan Press. 



118 Bibliography 

 

118 

 

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R. and Hagmann, P. (2009) 

'Predicting human resting-state functional connectivity from structural connectivity', Proceedings of 

the National Academy of Sciences, vol. 106, no. 6, pp. 2035–2040. 

Honey, C.J., Thivierge, J. and Sporns, O. (2010) 'Can structure predict function in the human brain?', 

NeuroImage, vol. 52, no. 3, pp. 766–776. 

Hosaka, R., Ikegnuci, T., Nakamura, H. and Akaki, O. (2004) 'Information Transformation from a 

Spatiotemporal Pattern to Synchrony through STDP Network', Proceedings IJCNN 2004, pp. 1475-

1480. 

Huettel, S.A., Song, A.W. and McCarthy, G. (2009) Functional Magnetic Resonance Imaging, 

Massachusetts: Sinauer. 

Humphries, M., Gurney, K. and Prescott, T. (2006) 'The brainstem reticular formation is a small-

world, not scale-free, network', Proceedings of the Royal Society B, vol. 273, no. 1585, pp. 503–511. 

Izhikevich, E. (2003) 'Simple model of spiking neurons', IEEE transactions on neural networks, vol. 

14, no. 6, pp. 1569-72. 

Izhikevich, E. (2007) Dynamical Systems In Neuroscience, Cambridge University Press. 

Jadbabaie, A., Motee, N. and Barahona, M. (2004) 'On the Stability of the Kuramoto Model of 

Coupled Nonlinear Oscillators', Systems Engineering, pp. 1-8. 

Jensen, O., Kaiser, J. and Lachaux, J. (2007) 'Human gamma-frequency oscillations associated with 

attention and memory', Trends in Neurosciences , vol. 30, no. 7, pp. 317–324. 

Jirsa, V.K., Jantzen, K.J., Fuchs, A. and Kelso, J.A.S. (2002) 'Spatiotemporal forward solution of the 

EEG and MEG using network modelling', IEEE Trans Med Imaging, vol. 21, no. 5, pp. 493-504. 

Joyce, K.E., Laurienti, P.J., Burdette, J.H. and Hayasaka, S. (2010) 'A new measure of centrality for 

brain networks', PLoS ONE, vol. 5, no. 8, p. e12200. 

Kelso, J.A.S. (2012) 'Multistability and metastability: understanding dynamic coordination in the 

brain', Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol. 

367, no. 1591, pp. 906-18. 



    119 

 

119 

 

Kelso, J.A.S. and Tognoli, E. (2007) 'Toward a Complementary Neuroscience: Metastable 

Coordination Dynamics of the Brain. Neurodynamics of Cognition and Consciousness', in Perlovsky, 

L.I. and Kozma, R. Understanding Complex Systems, Springer. 

Klimesch, W. (1999) 'EEG alpha and theta oscillations reflect cognitive and memory performance: a 

review and analysis', Brain research. Brain research reviews, vol. 29, no. 2-3, pp. 169–95. 

Kondgen, H., Geisler, C., Fusi, S., Wang, X., Luscher, H. and Giugliano, M. (2007) 'The dynamical 

response properties of neocortical neurons to temporally modulated noisy inputs in vitro', Cerebral 

Cortex, vol. 18, no. 9, pp. 2086–2097. 

Kopell, N., Ermentrout, G.B., Whittington, M.A. and Traub, R.D. (2000) 'Gamma rhythms and beta 

rhythms have different synchronization properties', Proceedings of the National Academy of Sciences, 

vol. 97, no. 4, pp. 1867–1872. 

Kuhnert, M.T., Geier, C., Elger, C.E. and Lehnertz, K. (2012) 'Identifying important nodes in 

weighted functional brain networks: A comparison of different centrality approaches', Chaos, vol. 22, 

no. 2, p. 023142. 

Kuramoto, Y. (1984) Chemical Oscillations, Waves and Turbulence, Berlin: Springer-Verlag. 

Kwok, H.F., Jurica, P., Raffone, A. and van Leeuwen, C. (2007) 'Robust emergence of small-world 

structure in networks of spiking neurons', Cognitive neurodynamics, vol. 1, no. 1, pp. 39-51. 

Lachaux, J.P., Chavez, M. and Lutz, A. (2003) 'A simple measure of correlation across time, 

frequency and space between continuous brain signals', Journal of neuroscience methods, vol. 123, 

no. 2, pp. 175-88. 

Latham, P.E., Richmond, B.J., Nelson, P.G. and Nirenberg, S. (2000) 'Intrinsic dynamics in neuronal 

networks. i. theory', Journal of Neurophysiology, vol. 83, no. 2, pp. 808–827. 

Le Van Quyen, M. (2005) 'Anticipating epileptic seizures: from mathematics to clinical applications', 

Comptes Rendus Biologies, vol. 328, no. 2, pp. 187–198. 

Leicht, E.A. and Newman, M.E.J. (2008) 'Community structure in directed networks', Physical 

Review Letters, vol. 100, p. 118703. 



120 Bibliography 

 

120 

 

Levy, N., Horn, D., Meilijson, I. and Ruppin, E. (2001) 'Distributed synchrony in a cell assembly of 

spiking neurons', Neural Networks, vol. 14, no. 6-7, pp. 815-24. 

Lisman, J. (2005) 'The theta/gamma discrete phase code occuring during the hippocampal phase 

precession may be a more general brain coding scheme', Hippocampus, vol. 15, no. 7, pp. 913-22. 

Lisman, J.E. and Idiart, M.A. (1995) 'Storage of 7 +/- 2 short-term memories in oscillatory subcycles', 

Science, vol. 267, no. 5203, pp. 1512–1515. 

Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., Schloegl, H., 

Stumvoll, M., Villringer, A. and Turner, R. (2010) 'Eigenvector centrality mapping for analyzing 

connectivity patterns in fMRI data of the human brain', PLoS ONE, vol. 5, no. 4, p. e10232. 

Maistrenko, Y., Lysyansky, B., Hauptmann, C., Burylko, O. and Tass, P. (2007) 'Multistability in the 

Kuramoto model with synaptic plasticity', Physical Review E, vol. 75, no. 6, pp. 1–8. 

Markram, H., Lübke, J., Frotscher, M., Roth, A. and Sakmann, B. (1997) 'Physiology and anatomy of 

synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex', 

Journal of physiology, vol. 500, no. Pt 2, pp. 409-40. 

Masquelier, T., Guyonneau, R. and Thorpe, S.J. (2008) 'Spike Timing Dependent Plasticity Finds the 

Start of Repeating Patterns in Continuous Spike Trains', PLoS ONE, vol. 1, p. e1377. 

Masuda, N. and Aihara, K. (2004) 'Self-Organizing Dual Coding Based on input time population rate 

code mode', Neural Computation, vol. 663, pp. 627-663. 

McCormick, D.A., Sejnowski, T.J. and Steriade, M. (1993) 'Thalamocortical oscillations in the 

sleeping and aroused brain', Science, vol. 262, pp. 679-85. 

Meunier, D., Lambiotte, R. and Bullmore, E.T. (2010) 'Modular and hierarchically modular 

organization of brain networks', Frontiers in neuroscience, vol. 4, December, p. 200. 

Miltner, W.H.R., Braun, C., Matthias, A., Witte, H. and Taub, E. (1999) ' Coherence of gamma-band 

EEG activity as a basis for associative learning', Nature, vol. 397, no. 6718, pp. 434–436. 

Morrison, A., Diesmann, M. and Gerstner, W. (2008) 'Phenomenological models of synaptic 

plasticity based on spike timing', Biological cybernetics, vol. 98, no. 6, pp. 459-78. 



    121 

 

121 

 

Niedermeyer, E. and da Silva, F.L. (2004) Electroencephalography: Basic Principles, Clinical 

Applications, and Related Fields, Lippincot Williams & Wilkins. 

Nyhus, E. and Curran, T. (2010) 'Functional role of gamma and theta oscillations in episodic 

memory', Neuroscience and biobehavioral reviews, vol. 34, no. 7, pp. 1023-35. 

Palva, J.M., Palva, S. and Kaila, K. (2005) 'Phase synchrony among neuronal oscillations in the 

human cortex', The Journal of Neuroscience, vol. 25, no. 15, pp. 3962–3972. 

Papp, E., Leinekugel, X., Henze, D.A., Lee, J. and Buzsáki, G. (2001) 'The apical shaft of CA1 

pyramidal cells is under GABAergic interneuronal control', Neuroscience, vol. 102, no. 4, pp. 715-

721. 

Park, H.J. and Friston, K. (2013) 'Structural and functional brain networks: from connections to 

cognition', Science, vol. 342, no. 6158, p. 1238411. 

Parra, J., Kalitzin, S.N., Iriarte, J., Blanes, W., Velis, D.N. and Lopes da Silva, F.H. (2003) 'Gamma-

band phase clustering and photosensitivity: is there an underlying mechanism common to 

photosensitive epilepsy and visual perception?', Brain, vol. 126, no. 5, pp. 1164–1172. 

Penttonen, M. and Buzsáki, G. (2003) 'Natural logarithmic relationship between brain oscillators', 

Thalamus & Related Systems, vol. 2, no. 2, pp. 145–152. 

Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. and Andersen, R.A. (2002) 'Temporal structure in 

neuronal activity during working memory in macaque parietal cortex', Nature Neuroscience, vol. 5, 

no. 8, pp. 805–811. 

Pfurtscheller, G., Stancak Jr, A. and Neuper, C. (1996) 'Post-movement beta synchronization. 

correlate of an idling motor area?', Electroencephalography and Clinical Neurophysiology, vol. 98, 

no. 4, pp. 281–293. 

Roopun, A.K., Kramer, M., Carracedo, L.M., Kaiser, M., Davies, C.H., Traub, R.D. and Kopell, N. 

(2008) 'Period concatenation underlies interactions between gamma and beta rhythms in neocortex', 

Frontiers in cellular neuroscience, vol. 2, April, p. 1. 

Rubinov, M. and Sporns, O. (2010) 'Complex network measures of brain connectivity: Uses and 

interpretations', NeuroImage, vol. 52, pp. 1059-69. 



122 Bibliography 

 

122 

 

Santos, B.A., Barandiaran, X.E. and Husbands, P. (2011) 'Metastable dynamical regimes in an 

oscillatory network modulated by an agents sensorimotor loop', Proceedings IEEE Symposium on 

Artificial Life 2011. 

Shanahan, M. (2010) 'Metastable chimera states in community structured oscillator networks', Chaos, 

vol. 20, no. 1, p. 013108. 

Shanahan,  M.   (2012)   'The   brain’s   connective   core   and   its   role   in   animal   cognition',  Philosophical 

transactions of the Royal Society of London. Series B, Biological sciences, vol. 367, no. 1603, pp. 

2704-14. 

Shanahan, M., Bingman, V.P., Shimizu, T., Wild, M. and Güntürkün, O. (2013) 'Large-scale network 

organization in the avian forebrain: a connectivity matrix and theoretical analysis', Frontiers in 

computational neuroscience, vol. 7, July, p. 89. 

Shanahan, M. and Wildie, M. (2012) 'Knotty-centrality: finding the connective core of a complex 

network', PloS ONE, vol. 7, no. 5, p. e36579. 

Shirvalkar, P.R., Rapp, P.R. and Shapiro, M.L. (2010) 'Bidirectional changes to hippocampal Theta-

Gamma comodulation predict memory for recent spatial episodes', Proceedings of the National 

Academy of Sciences, vol. 107, no. 15, pp. 7054–7059. 

Siegel, M., Warden, M.R. and Miller, E.K. (2009) 'Phase-dependent neuronal coding of objects in 

short-term memory', Proceedings of the National Academy of Sciences of the United States of 

America, vol. 106, no. 50, pp. 21341-6. 

Song, S., Miller, K.D. and Abbott, L.F. (2000) 'Competitive Hebbian learning through spike-timing-

dependent synaptic plasticity', Nature neuroscience, vol. 3, no. 9, pp. 919-26. 

Sporns, 0. (2013) 'Network attributes for segregation and integration in the human brain', Current 

opinion in neurobiology, vol. 23, no. 2, pp. 162-71. 

Sporns, O., Chialvo, D.R., Kaiser, M. and Hilgetag, C.C. (2004) 'Organization, development and 

function of complex brain networks.', Trends in cognitive sciences, vol. 8, no. 9, pp. 418-25. 

Sporns, O., Honey, C.J. and Kötter, R. (2007) 'Identification and classification of hubs in brain 

networks', PLoS ONE, vol. 2, no. 10, p. e1049. 



    123 

 

123 

 

Sporns, O. and Kötter, R. (2004) 'Motifs in brain networks', PLoS biology, vol. 2, no. 11, p. e369. 

Sporns, O. and Tononi, G. (2001) 'Classes of network connectivity and dynamics', Complexity, vol. 7, 

no. 1, pp. 28–38. 

Sporns, O., Tononi, G. and Edelman, G.M. (2000) 'Theoretical neuroanatomy: relating anatomical 

and functional connectivity in graphs and cortical connection matrices', Cerebral cortex, vol. 10, no. 

2, pp. 127-41. 

Steriade, M. (2001) 'Impact of network activities on neuronal properties in corticothalamic systems', 

Journal of Neurophysiology, vol. 86, no. 1, pp. 1–39. 

Steriade, M., Jones, E.G. and Llinás, R.R. (1990) Thalamic Oscillations and Signalling, John Wiley 

and Sons. 

Strogatz, S. (2000) 'From Kuramoto to Crawford: exploring the onset of synchronization in 

populations of coupled oscillators', Physica D: Nonlinear Phenomena, vol. 143, no. 1-4, pp. 1-20. 

Tognoli, E. and Kelso, J.A.S. (2011) 'Brain coordination dynamics: True and false faces of phase 

synchrony and metastability', Progress in Neurobiology, vol. 87, no. 1, pp. 31–40. 

Tononi, G., Sporns, O. and Edelman, G.M. (1994) 'A measure for brain complexity: relating 

functional segregation and integration in the nervous system', Proceeding National Acadamy of 

Science USA , vol. 91, pp. 5033-5037. 

Tort, A.B.L., Komorowski, R.W., Manns, J.R., Kopell, N.J. and Eichenbaum, H. (2009) 'Theta-

Gamma coupling increases during the learning of Item-Context associations', Proceedings of the 

National Academy of Sciences, vol. 106, no. 49, pp. 20942–20947. 

van den Heuvel, M.P., Mandl, R.C., Kahn, R.S. and Pol, H.E.H. (2009) 'Functionally linked resting-

state networks reflect the underlying structural connectivity architecture of the human brain', Human 

Brain Mapping, vol. 30, no. 10, pp. 3127–3141. 

van den Heuvel, M.P. and Sporns, O. (2011) ' Rich-club organization of the human connectome', The 

Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 31, no. 44, pp. 

15775-86. 



124 Bibliography 

 

124 

 

Varela, F., Lachaux, J., Rodriguez, E. and Martinerie, J. (2001) 'The Brainweb: Phase 

synchronization and large-scale integration', Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–

239. 

Vida, I., Bartos, M. and Jonas, P. (2006) 'Shunting inhibition improves robustness of gamma 

oscillations in hippocampal interneuron networks by homogenizing firing rates', Neuron, vol. 49, no. 

1, pp. 107–17. 

Wang, X. (2010) 'Neurophysiological and computational principles of cortical rhythms in cognition', 

Physiological Reviews, vol. 90, no. 3, pp. 1195–1268. 

Watts, D.J. (1999) 'Small worlds: the dynamics of networks between order and randomness' 

Princeton University Press. 

Watts,  D.J.  and  Strogatz,  S.H.  (1998)  'Collective  dynamics  of  ’small-world’  networks',  Nature, vol. 

393, no. 6684, pp. 440–442. 

Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B. and Buhl, E.H. (2000) 'Inhibition-based 

rhythms: experimental and mathematical observations on network dynamics', International journal 

of psychophysiology: official journal of the International Organization of Psychophysiology, vol. 38, 

no. 3, pp. 315–36. 

Wildie, M. and Shanahan, M. (2011) 'Metastability and chimera states in modular pulse-coupled 

oscillator networks.', Chaos, vol. 22, no. 4, p. 043131. 

Wildie, M. and Shanahan, M. (2012) 'Establishing Communication between Neuronal Populations 

through Competitive Entrainment', Frontiers in computational neuroscience, vol. 5, January, p. 62. 

Wilson, H.R. and Cowan, J.D. (1972) 'Excitatory and inhibitory interactions in localized populations 

of model neurons', Biophysical Journal , vol. 12, pp. 1–24. 

Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R. and Engel, A.K.F.P. 

(2007) 'Modulation of neuronal interactions through neuronal synchronization', Science, vol. 316, no. 

5831, pp. 1609-12. 



    125 

 

125 

 

Yu, W., Sommer, G., Daniilidis, K. and Duncan, J.S. (2005) 'Using skew Gabor filter in source 

signal separation and local spectral orientation analysis', Image and Vision Computing, vol. 23, pp. 

377-392. 

Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O. and Milham, M.P. 

(2012) 'Network centrality in the human functional connectome', Cerebral Cortex, vol. 22, no. 8, pp. 

1862–1875. 

 

 


